resolvin-d1 has been researched along with Peritonitis* in 16 studies
16 other study(ies) available for resolvin-d1 and Peritonitis
Article | Year |
---|---|
The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection.
Chronic inflammation is a hallmark of atherosclerosis and results from an imbalance between proinflammatory and proresolving signaling. The human GPR32 receptor, together with the ALX/FPR2 receptor, transduces biological actions of several proresolving mediators that stimulate resolution of inflammation. However, since no murine homologs of the human GPR32 receptor exist, comprehensive in vivo studies are lacking. Using human atherosclerotic lesions from carotid endarterectomies and creating a transgenic mouse model expressing human GPR32 on a Fpr2×ApoE double-KO background (hGPR32myc×Fpr2-/-×Apoe-/-), we investigated the role of GPR32 in atherosclerosis and self-limiting acute inflammation. GPR32 mRNA was reduced in human atherosclerotic lesions and correlated with the immune cell markers ARG1, NOS2, and FOXP3. Atherosclerotic lesions, necrotic core, and aortic inflammation were reduced in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice as compared with Fpr2-/-×Apoe-/- nontransgenic littermates. In a zymosan-induced peritonitis model, the hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice had reduced inflammation at 4 hours and enhanced proresolving macrophage responses at 24 hours compared with nontransgenic littermates. The GPR32 agonist aspirin-triggered resolvin D1 (AT-RvD1) regulated leukocyte responses, including enhancing macrophage phagocytosis and intracellular signaling in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice, but not in Fpr2-/-×Apoe-/- nontransgenic littermates. Together, these results provide evidence that GPR32 regulates resolution of inflammation and is atheroprotective in vivo. Topics: Animals; Atherosclerosis; Disease Models, Animal; Docosahexaenoic Acids; Female; Humans; Inflammation; Macrophages; Male; Mice; Mice, Knockout, ApoE; Peritonitis; Phagocytosis; Receptors, G-Protein-Coupled; Signal Transduction | 2021 |
Molecular and cellular profiles of the resolution phase in a damage-associated molecular pattern (DAMP)-mediated peritonitis model and revelation of leukocyte persistence in peritoneal tissues.
Models of microbe-elicited peritonitis have been invaluable to identify mechanisms underlying inflammation resolution, but whether resolution mechanisms differ from an inflammatory agent to another has not been determined. Thus, we analyzed the cellular and molecular components of the resolution phase of non-microbe-induced inflammation. In thioglycollate (TG)-induced peritonitis, resolution started at 12 h (Tmax) and displayed a 22 h resolution interval (Ri). During resolution, lipoxin A4, resolvin (Rv) D1 and RvD2, protectin D1 (PD1), and maresin 1 (MaR1) were transiently produced while RvD5 was continually generated. In addition, docosahexaenoic acid (DHA)-derived mediators were produced to a higher extent than in microbial peritonitis. We also investigated leukocyte infiltration and clearance in peritoneal tissues surrounding the inflammatory site. In the omentum, resolution parameters, neutrophil apoptosis, and efferocytosis were similar to those of the peritoneal cavity. However, we noticed long-term persistence of M2-polarized macrophages and B-lymphocytes in the omentum after TG administration, whereas zymosan injection caused M1/M2-macrophage and T-lymphocyte persistence regardless of the magnitude of the inflammatory response. Our study indicates that some aspects of resolution are shaped in a stimulus-specific manner, and it ultimately argues that the tissues surrounding the inflammatory site must also be considered to address the inflammatory response globally. Topics: Animals; Apoptosis; B-Lymphocytes; Blotting, Western; Cells, Cultured; Docosahexaenoic Acids; Female; Flow Cytometry; Immunoenzyme Techniques; Inflammation; Leukocytes; Lipids; Macrophages; Mice; Mice, Inbred C57BL; Omentum; Peritonitis; Phagocytosis; Real-Time Polymerase Chain Reaction; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Thioglycolates; Zymosan | 2015 |
Novel proresolving and tissue-regenerative resolvin and protectin sulfido-conjugated pathways.
Local mediators orchestrate the host response to both sterile and infectious challenge and resolution. Recent evidence demonstrates that maresin sulfido-conjugates actively resolve acute inflammation and promote tissue regeneration. In this report, we investigated self-limited infectious exudates for novel bioactive chemical signals in tissue regeneration and resolution. By use of spleens from Escherichia coli infected mice, self-resolving infectious exudates, human spleens, and blood from patients with sepsis, we identified 2 new families of potent molecules. Characterization of their physical properties and isotope tracking demonstrated that the bioactive structures contained a docosahexaenoate backbone and sulfido-conjugated triene or tetraene double-bond systems. Activated human phagocytes converted 17-hydro(peroxy)-4Z,7Z,10Z,13Z,15E,19Z-docosahexaenoic acid to these bioactive molecules. Regeneration of injured planaria was accelerated with nanomolar amounts of 16-glutathionyl, 17-hydroxy-4Z,7Z,10,12,14,19Z-docosahexaenoic acid and 16-cysteinylglycinyl, 17-hydroxy-4Z,7Z,10,12,14,19Z-docosahexaenoic acid (Protectin sulfido-conjugates) or 8-glutathionyl, 7,17-dihydroxy-4Z,9,11,13Z,15E,19Z-docosahexaenoic acid and 8-cysteinylglycinyl, 7,17-dihydroxy-4Z,9,11,13Z,15E,19Z-docosahexaenoic acid (Resolvin sulfido-conjugates). Each protectin and resolvin sulfido-conjugate dose dependently (0.1-10 nM) stimulated human macrophage bacterial phagocytosis, phagolysosomal acidification, and efferocytosis. Together, these results identify 2 novel pathways and provide evidence for structural elucidation of new resolution moduli. These resolvin and protectin conjugates identified in mice and human infected tissues control host responses promoting catabasis. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; CD59 Antigens; Cells, Cultured; Chromatography, Liquid; Docosahexaenoic Acids; Escherichia coli; Escherichia coli Infections; Humans; Inflammation; Inflammation Mediators; Leukocytes, Mononuclear; Macrophages; Mice; Peritonitis; Phagocytosis; Planarians; Regeneration; Sepsis; Spleen; Tandem Mass Spectrometry | 2015 |
Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent.
Resolution of inflammation is an active process driven by several new families of endogenous lipid mediators collectively coined specialized proresolving mediators (SPM). Here, we report a synthetic analog of resolvin D1 (RvD1) and aspirin-triggered RvD1, benzo-diacetylenic-17R-RvD1-methyl ester (BDA-RvD1), which was prepared using fewer steps than required for total organic synthesis of natural SPM. BDA-RvD1 was resistant to further metabolism by human recombinant 15-prostaglandin dehydrogenase, a major inactivation pathway for RvD1. In ischemia-reperfusion-initiated second organ injury, BDA-RvD1 intravenously (1 μg) reduced neutrophil infiltration into the lungs by 58 ± 9% and was significantly more potent than native RvD1. BDA-RvD1 at 100 ng/mouse also shortened the resolution interval, Ri, of Escherichia coli peritonitis with a similar potency as RvD1, by ~57%, from Ri 10.5 h to 4.5 h. With isolated human phagocytes, BDA-RvD1 at picomolar concentrations (10(-12) M) stimulated phagocytosis of zymosan A particles. BDA-RvD1 activated human recombinant G protein-coupled receptor 32/DRV1, an RvD1 receptor, in a dose-dependent manner. These results indicate that, both in vivo in mice and with isolated human cells, BDA-RvD1 shares defining proresolving actions of RvD1, including inhibiting leukocyte infiltration and stimulating phagocytosis. Moreover, they provide evidence for a new analog mimetic and example of an immunoresolvent, namely an agent that stimulates active resolution of inflammation, for a potential new therapeutic class. Topics: Animals; Cells, Cultured; Docosahexaenoic Acids; Escherichia coli; Escherichia coli Infections; Esters; Humans; Inflammation; Lung; Macrophages; Mice; Neutrophil Infiltration; Peritonitis; Phagocytes; Phagocytosis; Receptors, G-Protein-Coupled; Reperfusion Injury; Zymosan | 2015 |
Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages.
Resolvin D1 (RvD1; 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) is an endogenous immunoresolvent that regulates acute inflammation and orchestrates resolution. Here, we investigated anti-inflammatory and proresolving actions of RvD1 after oral administration. RvD1 rapidly accumulated in the mouse plasma after oral delivery and dose-dependently (1-100 ng/mouse) reduced leukocyte infiltration in zymosan A-induced acute peritonitis. Using mathematical resolution indices, RvD1 reduced Ψmax by ∼50%, shortened the resolution interval by 3 h, and significantly reduced total leukocyte (by ∼30-45%) and polymorphonuclear neutrophil (by ∼40-55%) accumulation when administered at the peak of peritonitis. RvD1 also improved course and outcome of severe peritonitis, shifting it toward resolution. In peritoneal macrophages (MΦs) from the resolution phase of peritonitis, RvD1 down-regulated (by 2- to 3-fold) select genes that control gene transcription, namely coactivator-associated arginine methyltransferase 1 (CARM1), and downstream genes, such as colony-stimulating factor 3, intercellular adhesion molecule 1, and monocyte inflammatory protein 2, which promote neutrophil infiltration and reduce MΦ phagocytosis. Congruently, CARM1 knockdown in human and murine MΦs induced a proresolving phenotype, recapitulating in vivo actions of RvD1. These results establish novel properties of RvD1 and demonstrate that RvD1 modifies the transcription control machinery in MΦs, as part of its mechanisms of action during the resolution of acute inflammation.-Recchiuti, A., Codagnone, M., Pierdomenico, A. M., Rossi, C., Mari, V. C., Cianci, E., Simiele, F., Gatta, V., Romano, M. Immunoresolving actions of oral resolvin D1 include selective regulation of the transcription machinery in resolution-phase mouse macrophages. Topics: Animals; Cells, Cultured; Docosahexaenoic Acids; Gene Expression Regulation; Humans; Inflammation; Leukocytes; Macrophages, Peritoneal; Male; Mice; Mice, Inbred C57BL; Neutrophil Infiltration; Neutrophils; Peritonitis; Phagocytosis; Transcription, Genetic | 2014 |
Vagus nerve controls resolution and pro-resolving mediators of inflammation.
Resolution of inflammation is now recognized as a biosynthetically active process involving pro-resolving mediators. Here, we show in zymosan-initiated peritoneal inflammation that the vagus nerve regulates local expression of netrin-1, an axonal guidance molecule that activates resolution, and that vagotomy reduced local pro-resolving mediators, thereby delaying resolution. In netrin-1(+/-) mice, resolvin D1 (RvD1) was less effective in reducing neutrophil influx promoting resolution of peritonitis compared with Ntn1(+/+). Netrin-1 shortened the resolution interval, decreasing exudate neutrophils, reducing proinflammatory mediators, and stimulating the production of resolvins, protectins, and lipoxins. Human monocytes incubated with netrin-1 produced proresolving mediators, including resolvins and lipoxins. Netrin-1 and RvD1 displayed bidirectional activation in that they stimulated each other's expression and enhanced efferocytosis. These results indicate that the vagus nerve regulates both netrin-1 and pro-resolving lipid mediators, which act in a bidirectional fashion to stimulate resolution, and provide evidence for a novel mechanism for local neuronal control of resolution. Topics: Animals; Blotting, Western; Cells, Cultured; Chemotaxis; Docosahexaenoic Acids; Humans; Inflammation; Inflammation Mediators; Lipids; Lipoxins; Macrophages; Mice; Mice, Inbred C57BL; Mice, Knockout; Microscopy, Fluorescence; Monocytes; Nerve Growth Factors; Netrin-1; Neutrophils; Peritonitis; Recombinant Proteins; Reverse Transcriptase Polymerase Chain Reaction; Tumor Suppressor Proteins; Vagotomy; Vagus Nerve; Zymosan | 2014 |
Aging delays resolution of acute inflammation in mice: reprogramming the host response with novel nano-proresolving medicines.
Aging is associated with an overt inflammatory phenotype and physiological decline. Specialized proresolving lipid mediators (SPMs) are endogenous autacoids that actively promote resolution of inflammation. In this study, we investigated resolution of acute inflammation in aging and the roles of SPMs. Using a self-resolving peritonitis and resolution indices coupled with lipid mediator metabololipidomics, we found that aged mice had both delayed resolution and reduced SPMs. The SPM precursor docosahexaenoic acid accelerated resolution via increased SPMs and promoted human monocyte reprogramming. In aged mice, novel nano-proresolving medicines carrying aspirin-triggered resolvins D1 and D3 reduced inflammation by promoting efferocytosis. These findings provide evidence for age-dependent resolution pathways in acute inflammation and novel means to activate resolution. Topics: Aging; Animals; Aspirin; Autacoids; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fatty Acids, Unsaturated; Humans; Inflammation; Inflammation Mediators; Leukocytes, Mononuclear; Macrophages; Male; Metabolomics; Mice; Mice, Inbred BALB C; Nanomedicine; Peritonitis; Principal Component Analysis; Zymosan | 2014 |
Novel n-3 immunoresolvents: structures and actions.
Resolution of inflammation is now held to be an active process where autacoids promote homeostasis. Using functional-metabololipidomics and in vivo systems, herein we report that endogenous n-3 docosapentaenoic (DPA) acid is converted during inflammation-resolution in mice and by human leukocytes to novel n-3 products congenerous to D-series resolvins (Rv), protectins (PD) and maresins (MaR), termed specialized pro-resolving mediators (SPM). The new n-3 DPA structures include 7,8,17-trihydroxy-9,11,13,15E,19Z-docosapentaenoic acid (RvD1(n-3 DPA)), 7,14-dihydroxy-8,10,12,16Z,19Z-docosapentaenoic acid (MaR1(n-3 DPA)) and related bioactive products. Each n-3 DPA-SPM displayed protective actions from second organ injury and reduced systemic inflammation in ischemia-reperfusion. The n-3 DPA-SPM, including RvD1(n-3 DPA) and MaR1(n-3 DPA), each exerted potent leukocyte directed actions in vivo. With human leukocytes each n-3 DPA-SPM reduced neutrophil chemotaxis, adhesion and enhanced macrophage phagocytosis. Together, these findings demonstrate that n-3 DPA is converted to novel immunoresolvents with actions comparable to resolvins and are likely produced in humans when n-3 DPA is elevated. Topics: Animals; CD59 Antigens; Cell Adhesion; Cells, Cultured; Chemotaxis; Docosahexaenoic Acids; Endothelium, Vascular; Fatty Acids, Unsaturated; Humans; Inflammation; Inflammation Mediators; Leukocytes; Lipids; Macrophages; Metabolomics; Mice; Neutrophils; Peritonitis; Phagocytosis; Reperfusion Injury | 2013 |
Resolvin D1 stimulates efferocytosis through p50/p50-mediated suppression of tumor necrosis factor-α expression.
Phagocytosis of apoptotic neutrophils, termed efferocytosis, is essential for the resolution of inflammation as it prevents the tissues surrounding the inflamed site from being exposed to the toxic contents of lytic cells. Resolvin D1 (RvD1), endogenously generated from docosahexaenoic acid during resolution of inflammation, is known to stimulate efferocytosis. However, the molecular mechanism underlying RvD1-mediated enhancement of efferocytosis remains largely unresolved. In the present study, murine macrophage-like RAW264.7 cells treated with lipopolysaccharide (LPS) exhibited markedly reduced efferocytic activity, but this was restored by co-incubation with RvD1. RvD1-induced restoration of the efferocytic activity appears to be mediated by downregulation of LPS-induced TNF-α expression. The inhibitory effect of RvD1 on LPS-induced TNF-α expression was associated with enhanced nuclear localization of p50/p50 homodimer and concomitant reduction of p65/p50 heterodimer accumulation in the nucleus. RvD1 triggered phosphorylation and proteasomal degradation of nuclear factor κB1 (NF-κB1) p105 to generate p50, which was subsequently translocated to the nucleus as a p50/p50 homodimer. Knockdown of NF-κB p50 abolished the ability of RvD1 to suppress TNF-α expression and also to restore efferocytosis, suggesting that the replacement of p65/p50 with p50/p50 homodimer in the nucleus is crucial for RvD1-mediated stimulation of efferocytosis. In a murine peritonitis model, intraperitoneal administration of RvD1 abolished the zymosan-A-induced TNF-α production, thereby stimulating efferocytosis. Taken together, these findings indicate that RvD1 expedites resolution of inflammation through induction of efferocytosis by p50/p50-homodimer-mediated repression of TNF-α production. Topics: Animals; Apoptosis; Cell Line; Docosahexaenoic Acids; Down-Regulation; Humans; Inflammation; Jurkat Cells; Leukocyte Count; Lipopolysaccharides; Macrophages; Mice; Mice, Inbred ICR; Neutrophils; NF-kappa B p50 Subunit; Peritonitis; Phagocytosis; Transcription Factor RelA; Tumor Necrosis Factor-alpha; Zymosan | 2013 |
Proresolution therapy for the treatment of delayed healing of diabetic wounds.
Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor-mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes. Topics: Animals; Apoptosis; Diabetes Mellitus, Type 2; Docosahexaenoic Acids; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Peritonitis; Phagocytosis; Receptors, Fc; Thymocytes; Wound Healing | 2013 |
Resolvin D1 receptor stereoselectivity and regulation of inflammation and proresolving microRNAs.
Resolution of acute inflammation is an active process that involves the biosynthesis of specialized proresolving lipid mediators. Among them, resolvin D1 (RvD1) actions are mediated by two G protein-coupled receptors (GPCRs), ALX/FPR2 and GPR32, that also regulate specific microRNAs (miRNAs) and their target genes in novel resolution circuits. We report the ligand selectivity of RvD1 activation of ALX/FPR2 and GPR32. In addition to RvD1, its aspirin-triggered epimer and RvD1 analogs each dose dependently and effectively activated ALX/FPR2 and GPR32 in GPCR-overexpressing β-arrestin systems using luminescence and electric cell-substrate impedance sensing. To corroborate these findings in vivo, neutrophil infiltration in self-limited peritonitis was reduced in human ALX/FPR2-overexpressing transgenic mice that was further limited to 50% by RvD1 treatment with as little as 10 ng of RvD1 per mouse. Analysis of miRNA expression revealed that RvD1 administration significantly up-regulated miR-208a and miR-219 in exudates isolated from ALX/FPR2 transgenic mice compared with littermates. Overexpression of miR-208a in human macrophages up-regulated IL-10. In comparison, in ALX/FPR2 knockout mice, RvD1 neither significantly reduced leukocyte infiltration in zymosan-induced peritonitis nor regulated miR-208a and IL-10 in these mice. Together, these results demonstrate the selectivity of RvD1 interactions with receptors ALX/FPR2 and GPR32. Moreover, they establish a new molecular circuit that is operative in the resolution of acute inflammation activated by the proresolving mediator RvD1 involving specific GPCRs and miRNAs. Topics: Acute Disease; Animals; Arrestins; beta-Arrestins; Cells, Cultured; Docosahexaenoic Acids; Dose-Response Relationship, Drug; Electric Impedance; Gene Expression Regulation; Humans; Inflammation; Interleukin-10; Ligands; Macrophages; Mice; Mice, Knockout; Mice, Transgenic; MicroRNAs; Neutrophil Infiltration; Peritonitis; Receptors, Formyl Peptide; Receptors, G-Protein-Coupled; Receptors, Lipoxin; Up-Regulation | 2012 |
Infection regulates pro-resolving mediators that lower antibiotic requirements.
Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPMs). In self-resolving E. coli exudates (10(5) colony forming units, c.f.u.), the dominant SPMs identified were resolvin (Rv) D5 and protectin D1 (PD1), which at 12 h were at significantly greater levels than in exudates from higher titre E. coli (10(7) c.f.u.)-challenged mice. Germ-free mice had endogenous RvD1 and PD1 levels higher than in conventional mice. RvD1 and RvD5 (nanograms per mouse) each reduced bacterial titres in blood and exudates, E. coli-induced hypothermia and increased survival, demonstrating the first actions of RvD5. With human polymorphonuclear neutrophils and macrophages, RvD1, RvD5 and PD1 each directly enhanced phagocytosis of E. coli, and RvD5 counter-regulated a panel of pro-inflammatory genes, including NF-κB and TNF-α. RvD5 activated the RvD1 receptor, GPR32, to enhance phagocytosis. With self-limited E. coli infections, RvD1 and the antibiotic ciprofloxacin accelerated resolution, each shortening resolution intervals (R(i)). Host-directed RvD1 actions enhanced ciprofloxacin's therapeutic actions. In 10(7) c.f.u. E. coli infections, SPMs (RvD1, RvD5, PD1) together with ciprofloxacin also heightened host antimicrobial responses. In skin infections, SPMs enhanced vancomycin clearance of Staphylococcus aureus. These results demonstrate that specific SPMs are temporally and differentially regulated during infections and that they are anti-phlogistic, enhance containment and lower antibiotic requirements for bacterial clearance. Topics: Animals; Anti-Bacterial Agents; Docosahexaenoic Acids; Escherichia coli; Escherichia coli Infections; Humans; Hypothermia; Macrophages; Male; Mice; Mice, Inbred C57BL; Microbial Viability; Neutrophils; Peritonitis; Phagocytosis; Skin Diseases; Staphylococcal Infections; Staphylococcus aureus; Vancomycin | 2012 |
MicroRNAs in resolution of acute inflammation: identification of novel resolvin D1-miRNA circuits.
Mechanisms controlling resolution of acute inflammation are of wide interest. Here, we investigated microRNAs (miRNAs) in self-limited acute inflammatory exudates and their regulation by resolvin D1 (RvD1). Using real-time PCR analysis, we found in resolving exudates that miR-21, miR-146b, miR-208a, miR-203, miR-142, miR-302d, and miR-219 were selectively regulated (P<0.05) in self-limited murine peritonitis. RvD1 (300 ng/mouse or 15 μg kg(-1)) reduced zymosan-elicited neutrophil infiltration into the peritoneum 25-50% and shortened the resolution interval (R(i)) by ∼4 h. In peritonitis at 12 h, RvD1 up-regulated miR-21, miR-146b, and miR-219 and down-regulated miR-208a in vivo. In human macrophages overexpressing recombinant RvD1 receptors ALX/FPR2 or GPR32, these same miRNAs were significantly regulated (P<0.05) by RvD1 at concentrations as low as 10 nM, recapitulating the in vivo circuit. In addition, RvD1-miRNAs identified herein target cytokines and proteins involved in the immune system, e.g., miR-146b targeted NF-κB signaling, and miR-219 targeted 5-lipoxygenase and reduced leukotriene production. RvD1 also reduced nuclear translocation of NF-κB and SMAD and down-regulated phospho-IκB. Taken together, these results indicate that resolvin-regulated specific miRNAs target genes involved in resolution and establish a novel resolution circuit involving RvD1 receptor-dependent regulation of specific miRNAs. Topics: Acute Disease; Animals; Docosahexaenoic Acids; Gene Expression Regulation; Inflammation; Mice; MicroRNAs; Peritonitis; Polymerase Chain Reaction; Recombinant Proteins; Zymosan | 2011 |
Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids.
During the resolution phase of inflammation, apoptotic leukocytes are efferocytosed by macrophages in a nonphlogistic fashion that results in diminished responses to bacterial moieties and production of anti-inflammatory cytokines. Complement receptor 3 and pro-resolving lipid mediators promote the engulfment of apoptotic leukocytes by macrophages. Here, we present evidence for the emergence of pro-resolving, CD11b(low) macrophages in vivo during the resolution of murine peritonitis. These macrophages are distinct from the majority of peritoneal macrophages in terms of their functional protein expression profile, as well as pro-resolving properties, such as apoptotic leukocyte engulfment, indifference to TLR ligands, and emigration to lymphoid organs. Notably, we also found macrophages convert from the CD11b(high) to the CD11b(low) phenotype upon interaction with apoptotic cells ex vivo. In addition, we found that the pro-resolving lipid mediators resolvin E1 and D1, and the glucocorticoid dexamethasone regulated pro-resolving macrophage functions in vivo. This regulation culminated in a novel pro-resolving function, namely reducing the apoptotic leukocyte ingestion requirement for CD11b(low) macrophage generation. These new phenotype and molecular pathway markers define the new satiated macrophage. Thus, we suggest that satisfying efferocytosis generates CD11b(low) macrophages that are essential for complete nonphlogistic containment of inflammatory agents and the termination of acute inflammation. Topics: Adoptive Transfer; Animals; Apoptosis; Ascitic Fluid; CD11b Antigen; Cell Count; Cell Movement; Cytokines; Cytophagocytosis; Dexamethasone; Docosahexaenoic Acids; Eicosapentaenoic Acid; Glucocorticoids; Lymph Nodes; Macrophages, Peritoneal; Male; Mice; Mice, Inbred C57BL; Neutrophils; Peritonitis; Proteins; Receptors, Cell Surface; Spleen; Toll-Like Receptors | 2011 |
Cutting edge: Humanized nano-proresolving medicines mimic inflammation-resolution and enhance wound healing.
Endogenous microparticles (MPs) were systematically profiled during the time course of self-limited inflammation. Precursors for specialized proresolving lipid mediators were identified in MPs from inflammatory exudates using liquid chromatography tandem mass spectrometry-based metabolomics. Hence, we postulated that formation of anti-inflammatory and proresolving lipid mediators could underlie beneficial effects attributed to MPs and that this process could serve as a basis for biomimicry. Using human neutrophil-derived MPs, we constructed novel nanoparticles (NPs) containing aspirin-triggered resolvin D1 or a lipoxin A(4) analog. Enriched NPs dramatically reduced polymorphonuclear cell influx in murine peritonitis, shortened resolution intervals, and exhibited proresolving actions accelerating keratinocyte healing. The enriched NPs protected against inflammation in the temporomandibular joint. These findings indicate that humanized NPs, termed nano-proresolving medicines, are mimetics of endogenous resolving mechanisms, possess potent beneficial bioactions, can reduce nanotoxicity, and offer new therapeutic approaches. Topics: Animals; Anti-Inflammatory Agents; Aspirin; Cell Movement; Chromatography, Liquid; Docosahexaenoic Acids; Humans; Inflammation; Keratinocytes; Lipids; Lipoxins; Male; Mice; Microspheres; Molecular Mimicry; Nanoparticles; Neutrophils; Peritonitis; Tandem Mass Spectrometry; Temporomandibular Joint; Temporomandibular Joint Disorders; Wound Healing | 2011 |
Rapid appearance of resolvin precursors in inflammatory exudates: novel mechanisms in resolution.
Resolution of inflammation is essential. Although supplementation of omega-3 fatty acids is widely used, their availability at sites of inflammation is not known. To this end, a multidisciplinary approach was taken to determine the relationship of circulating omega-3 to inflammatory exudates and the generation of resolution signals. In this study, we monitored resolvin precursors in evolving exudates, which initially paralleled increases in edema and infiltrating neutrophils. We also prepared novel microfluidic chambers to capture neutrophils from a drop of blood within minutes that permitted single-cell monitoring. In these, docosahexaenoic acid-derived resolvin D1 rapidly stopped neutrophil migration, whereas precursor docosahexaenoic acid did not. In second organ injury via ischemia-reperfusion, resolvin metabolically stable analogues were potent organ protectors reducing neutrophils. Together, these results indicate that circulating omega-3 fatty acids rapidly appear in inflammatory sites that require conversion to resolvins that control excessive neutrophil infiltration, protect organs, and foster resolution. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Ascitic Fluid; Cell Migration Inhibition; Diffusion Chambers, Culture; Docosahexaenoic Acids; Eicosapentaenoic Acid; Exudates and Transudates; Fatty Acids, Omega-3; Humans; Inflammation Mediators; Male; Mice; Mice, Inbred Strains; Neutrophils; Peritonitis; Time Factors | 2008 |