resolvin-d1 and Fibrosis

resolvin-d1 has been researched along with Fibrosis* in 5 studies

Other Studies

5 other study(ies) available for resolvin-d1 and Fibrosis

ArticleYear
The Anti-Inflammatory Mediator 17(R)-Resolvin D1 Attenuates Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis.
    Drug design, development and therapy, 2023, Volume: 17

    Increased inflammation contributes to pressure overload-induced myocardial remodeling. 17(R)-Resolvin D1 (17(R)-RvD1), a potent lipid mediator derived from docosahexaenoic acid, possesses anti-inflammatory and pro-resolving properties. However, the association between 17(R)-RvD1 and pressure overload-induced cardiac hypertrophy remains unclear.. Transverse aortic constriction (TAC) surgery was performed to establish a cardiac hypertrophy model. C57BL/6J mice were randomly assigned to the Sham, TAC and TAC+17(R)-RvD1 groups. 17(R)-RvD1 was injected (2 μg/kg, i.p.) before TAC surgery and once every other day after surgery for 4 weeks. The same volume of saline was injected into the mice in both Sham group and TAC group. Then, cardiac function was evaluated and heart tissues were collected for biological analysis.. 17(R)-RvD1 treatment attenuated TAC-induced increase in left ventricular diameter and decrease in left ventricular contractility, mitigated increased cardiomyocyte cross-sectional area, and downregulated the expression of hypertrophic genes. Besides, 17(R)-RvD1 attenuated myocardial fibrosis, as indicated by the decreased LV collagen volume and expression of fibrotic genes. In addition, 17(R)-RvD1 ameliorated the inflammatory response in cardiac tissue, as illustrated by the decreased infiltration of CD68. 17(R)-RvD1 attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and the possible mechanism may be associated with the inhibition of NLRP3 inflammasome. 17(R)-RvD1 may serve as a potential drug for the treatment of cardiac hypertrophy.

    Topics: Animals; Anti-Inflammatory Agents; Cardiomegaly; Docosahexaenoic Acids; Fibrosis; Inflammasomes; Inflammation; Mice; Mice, Inbred C57BL; Myocytes, Cardiac; NLR Family, Pyrin Domain-Containing 3 Protein; Ventricular Remodeling

2023
Resolvin D1 Prevents Epithelial-to-Mesenchymal Transition and Reduces Collagen Deposition by Stimulating Autophagy in Intestinal Fibrosis.
    Digestive diseases and sciences, 2022, Volume: 67, Issue:10

    Intestinal fibrosis is the most common complication of inflammatory bowel disease; nevertheless, specific therapies are still unavailable. Resolvin D1 (RvD1), a typical endogenous ω-3 fatty acid-derived lipid mediator, has attracted wide attention due to its remarkable anti-fibrosis effects. However, the efficacy and mechanisms of RvD1 in intestinal fibrosis remain unclear.. To investigate the protective effect of RvD1 in a dextran sulfate sodium (DSS)-induced intestinal fibrosis model and explore the molecular mechanisms underlying its anti-fibrotic effect.. A DSS-induced intestinal fibrosis model and intestinal epithelial-to-mesenchymal transition (EMT) model were used to observe the efficacy of RvD1, and fibroblasts were stimulated with conditioned medium with or without TGF-β1 to investigate the probable mechanisms of RvD1 in intestinal fibrosis disease.. Intestinal fibrosis was effectively alleviated by RvD1 in a DSS-induced model, both preventively and therapeutically, and autophagy inhibition-induced EMT in intestinal epithelial cells was significantly suppressed in vivo and in vitro. Furthermore, RvD1 reduced epithelial cell EMT paracrine signaling, which promoted the differentiation of local fibroblasts into myofibroblasts.. Our results suggested that RvD1 reduces autophagy-induced EMT in intestinal epithelial cells and ameliorates intestinal fibrosis by disrupting epithelial-fibroblast crosstalk.

    Topics: Autophagy; Collagen; Culture Media, Conditioned; Dextran Sulfate; Docosahexaenoic Acids; Epithelial-Mesenchymal Transition; Fibrosis; Humans; Transforming Growth Factor beta1

2022
The inflammation-resolution promoting molecule resolvin-D1 prevents atrial proarrhythmic remodelling in experimental right heart disease.
    Cardiovascular research, 2021, 06-16, Volume: 117, Issue:7

    Inflammation plays a role in atrial fibrillation (AF), but classical anti-inflammatory molecules are ineffective. Recent evidence suggests that failure of inflammation-resolution causes persistent inflammatory signalling and that a novel drug-family called resolvins promotes inflammation-resolution. Right heart disease (RHD) is associated with AF; experimental RHD shows signs of atrial inflammatory-pathway activation. Here, we evaluated resolvin-therapy effects on atrial arrhythmogenic remodelling in experimental RHD.. Pulmonary hypertension and RHD were induced in rats with an intraperitoneal injection of 60 mg/kg monocrotaline (MCT). An intervention group received daily resolvin-D1 (RvD1), starting 1 day before MCT administration. Right atrial (RA) conduction and gene-expression were analysed respectively by optical mapping and qPCR/gene-microarray. RvD1 had no or minimal effects on MCT-induced pulmonary artery or right ventricular remodelling. Nevertheless, in vivo transoesophageal pacing induced atrial tachyarrhythmias in no CTRL rats vs. 100% MCT-only rats, and only 33% RvD1-treated MCT rats (P < 0.001 vs. MCT-only). Conduction velocity was significantly decreased by MCT, an effect prevented by RvD1. RHD caused RA dilation and fibrosis. RvD1 strongly attenuated RA fibrosis but had no effect on RA dilation. MCT increased RA expression of inflammation- and fibrosis-related gene-expression pathways on gene-microarray transcriptomic analysis, effects significantly attenuated by RvD1 (334 pathways enriched in MCT-rats vs. control; only 177 dysregulated by MCT with RvD1 treatment). MCT significantly increased RA content of type 1 (proinflammatory) CD68-positive M1 macrophages without affecting type 2 (anti-inflammatory) M2 macrophages. RvD1-treated MCT-rat RA showed significant reductions in proinflammatory M1 macrophages and increases in anti-inflammatory M2 macrophages vs. MCT-only. MCT caused statistically significant increases in protein-expression (western blot) of COL3A1, ASC, CASP1, CASP8, IL1β, TGFβ3, CXCL1, and CXCL2, and decreases in MMP2, vs. control. RvD1-treatment suppressed all these MCT-induced protein-expression changes.. The inflammation-resolution enhancing molecule RvD1 prevents AF-promoting RA remodelling, while suppressing inflammatory changes and fibrotic/electrical remodelling, in RHD. Resolvins show potential promise in combating atrial arrhythmogenic remodelling by suppressing ongoing inflammatory signalling.

    Topics: Action Potentials; Animals; Anti-Arrhythmia Agents; Anti-Inflammatory Agents; Atrial Fibrillation; Atrial Remodeling; Disease Models, Animal; Docosahexaenoic Acids; Fibrosis; Heart Atria; Heart Rate; Hypertension, Pulmonary; Inflammation Mediators; Macrophages; Male; Phenotype; Rats, Wistar; Signal Transduction; Transcriptome; Ventricular Dysfunction, Right

2021
Endothelial dysfunction exacerbates renal interstitial fibrosis through enhancing fibroblast Smad3 linker phosphorylation in the mouse obstructed kidney.
    PloS one, 2013, Volume: 8, Issue:12

    Endothelial dysfunction and enhanced transforming growth factor-β (TGF-β)/Smad3 signalling are common features of progressive renal fibrosis. This study investigated a potential link between these mechanisms. In unilateral ureteric obstruction (UUO) we observed an acute (6 hr) down-regulation of nitric oxide synthase 3 (NOS3/eNOS) levels and increased phosphorylation of the linker region of Smad3 at T179 and S208 in Smad3/JNK complexes. These events preceded Smad3 C-terminal domain phosphorylation and the induction of myofibroblast proliferation at 48 hrs. Mice deficient in NOS3 showed enhanced myofibroblast proliferation and collagen accumulation compared to wild type mice in a 7 day UUO model. This was associated with enhanced phosphorylation of Smad3 T179 and S208 by 92% and 88%, respectively, whereas Smad3-C-terminal phosphorylation was not affected. Resolvin D1 (RvD1) can suppress renal fibrosis in the UUO model, and further analysis herein showed that RvD1 protected against endothelial dysfunction and suppressed Smad3/JNK complex formation with a consequent reduction in phosphorylation of Smad3 T179 and S208 by 78% and 65%, respectively, while Smad3 C-terminal phosphorylation was unaltered. In vitro, conditioned media from mouse microvascular endothelial cells (MMEC) treated with a general inhibitor of nitric oxide synthase (L-NAME) augmented the proliferation and collagen production of renal fibroblasts (NRK49F cells) compared to control MMEC media and this was associated with increased phosphorylation of JNK and Smad3 T179 and S208, whereas Smad3-C-terminal domain phosphorylation was unaffected. The addition of RvD1 to L-NAME treated MMEC abrogated these effects of the conditioned media on renal fibroblasts. Finally, Smad3 T179/V and S208/A mutations significantly inhibit TGF-β1 induced up-regulation collagen I promoter. In conclusion, these data suggest that endothelial dysfunction can exacerbate renal interstitial fibrosis through increased fibroblast proliferation and collagen production via enhanced Smad3 linker phosphorylation.

    Topics: Animals; Blotting, Western; Cell Proliferation; Cells, Cultured; Collagen; Culture Media, Conditioned; Docosahexaenoic Acids; Endothelium, Vascular; Fibroblasts; Fibrosis; Immunoprecipitation; Kidney Diseases; Luciferases; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mutation; Nitric Oxide Synthase Type III; Phosphorylation; Promoter Regions, Genetic; Rats; Signal Transduction; Smad3 Protein; Transforming Growth Factor beta1; Ureteral Obstruction

2013
Resolvins E1 and D1 inhibit interstitial fibrosis in the obstructed kidney via inhibition of local fibroblast proliferation.
    The Journal of pathology, 2012, Volume: 228, Issue:4

    Resolvin E1 (RvE1) is a naturally occurring lipid-derived mediator generated during the resolution of inflammation. The anti-inflammatory effects of RvE1 have been demonstrated in a variety of disease settings; however, it is not known whether RvE1 may also exert direct anti-fibrotic effects. We examined the potential anti-fibrotic actions of RvE1 in the mouse obstructed kidney-a model in which tissue fibrosis is driven by unilateral ureteric obstruction (UUO), an irreversible, non-immune insult. Administration of RvE1 (300 ng/day) to mice significantly reduced accumulation of α-smooth muscle actin (SMA)(+) myofibroblasts and the deposition of collagen IV on day 6 after UUO. This protective effect was associated with a marked reduction of myofibroblast proliferation on days 2, 4 and 6 after UUO. RvE1 treatment also inhibited production of the major fibroblast mitogen, platelet-derived growth factor-BB (PDGF-BB), in the obstructed kidney. Acute resolvin treatment over days 2-4 after UUO also had a profound inhibitory effect upon myofibroblast proliferation without affecting the PDGF expression, suggesting a direct effect upon fibroblast proliferation. In vitro studies established that RvE1 can directly inhibit PDGF-BB-induced proliferation in primary mouse fibroblasts. RvE1 induced transient, but not sustained, activation of the pro-proliferative ERK and AKT signalling pathways. Of note, RvE1 inhibited the sustained activation of ERK and AKT pathways seen in response to PDGF stimulation, thereby preventing up-regulation of molecules required for progression through the cell cycle (c-Myc, cyclin D) and down-regulation of inhibitors of cell cycle progression (p21, cip1). Finally, siRNA-based knock-down studies showed that the RvE1 receptor, ChemR23, is required for the anti-proliferative actions of RvE1 in cultured fibroblasts. In conclusion, this study demonstrates that RvE1 can inhibit fibroblast proliferation in vivo and in vitro, identifying RvE1 as a novel anti-fibrotic therapy.

    Topics: Animals; Becaplermin; Cell Proliferation; Docosahexaenoic Acids; Eicosapentaenoic Acid; Fibroblasts; Fibrosis; Kidney; Macrophages; Male; Mice, Inbred C57BL; Primary Cell Culture; Proto-Oncogene Proteins c-sis; Ureteral Obstruction

2012