resolvin-d1 has been researched along with Fibromyalgia* in 1 studies
1 other study(ies) available for resolvin-d1 and Fibromyalgia
Article | Year |
---|---|
Effects of D-series resolvins on behavioral and neurochemical changes in a fibromyalgia-like model in mice.
This study investigated whether the spinal or systemic treatment with the lipid resolution mediators resolvin D1 (RvD1), aspirin-triggered resolvin D1 (AT-RvD1) and resolvin D2 (RvD2) might interfere with behavioral and neurochemical changes in the mouse fibromyalgia-like model induced by reserpine. Acute administration of AT-RvD1 and RvD2 produced a significant inhibition of mechanical allodynia and thermal sensitization in reserpine-treated mice, whereas RvD1 was devoid of effects. A similar antinociceptive effect was obtained by acutely treating animals with the reference drug pregabalin. Noteworthy, the repeated administration of AT-RvD1 and RvD2 also prevented the depressive-like behavior in reserpine-treated animals, according to assessment of immobility time, although the chronic administration of pregabalin failed to affect this parameter. The induction of fibromyalgia by reserpine triggered a marked decrease of dopamine and serotonin (5-HT) levels, as examined in total brain, spinal cord, cortex and thalamus. Reserpine also elicited a reduction of glutamate levels in total brain, and a significant increase in the spinal cord and thalamus. Chronic treatment with RvD2 prevented 5-HT reduction in total brain, and reversed the glutamate increases in total brain and spinal cord. Otherwise, AT-RvD1 led to a recovery of dopamine levels in cortex, and 5-HT in thalamus, whilst it diminished brain glutamate contents. Concerning pregabalin, this drug prevented dopamine reduction in total brain, and inhibited glutamate increase in brain and spinal cord of reserpine-treated animals. Our data provide novel evidence, showing the ability of D-series resolvins AT-RvD1, and mainly RvD2, in reducing painful and depressive symptoms allied to fibromyalgia in mice. Topics: Analgesics; Animals; Antidepressive Agents; Brain; Depression; Disease Models, Animal; Docosahexaenoic Acids; Dopamine; Fibromyalgia; gamma-Aminobutyric Acid; Glutamic Acid; Hot Temperature; Hyperalgesia; Male; Mice; Nociceptive Pain; Pregabalin; Serotonin; Spinal Cord; Touch | 2014 |