resolvin-d1 and Diabetes-Mellitus--Type-2

resolvin-d1 has been researched along with Diabetes-Mellitus--Type-2* in 7 studies

Other Studies

7 other study(ies) available for resolvin-d1 and Diabetes-Mellitus--Type-2

ArticleYear
Influences of resolvin D1 and D2 on the risk of type 2 diabetes mellitus: a Chinese community-based cohort study.
    Frontiers in immunology, 2023, Volume: 14

    Although cellular and animal studies have reported that resolvin D1 (RvD1) and resolvin D2 (RvD2) are mechanisms involved in the development of type 2 diabetes mellitus (T2DM), the impact of RvD1 and RvD2 on the risk of T2DM at a population level remains unclear.. We included 2755 non-diabetic adults from a community-based cohort in China and followed them for seven years. Cox proportional hazards model was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) for the association of RvD1 and RvD2 with T2DM probability. Time-dependent receiver operator characteristics (ROC) curve was used to evaluate the predictive performance of RvD1 and RvD2 for the risk of T2DM based on the Chinese CDC T2DM prediction model (CDRS).. A total of 172 incident T2DM cases were identified. Multivariate-adjusted HRs (95% CI) for T2DM across quartiles of RvD1 levels (Q1, Q2, Q3 and Q4) were 1.00, 1.64 (1.03-2.63), 1.80 (1.13-2.86) and 1.61 (1.01-2.57), respectively. Additionally, body mass index (BMI) showed a significant effect modification in the association of RvD1 with incident T2DM (. Higher RvD1 and RvD2 levels are associated with a higher risk of T2DM at the population level.

    Topics: Body Mass Index; Cohort Studies; Diabetes Mellitus, Type 2; East Asian People; Humans

2023
Characterization of Mice Ubiquitously Overexpressing Human 15-Lipoxygenase-1: Effect of Diabetes on Peripheral Neuropathy and Treatment with Menhaden Oil.
    Journal of diabetes research, 2021, Volume: 2021

    To rigorously explore the role of omega-3 polyunsaturated fatty acids (PUFA) in the treatment of diabetic peripheral neuropathy (DPN), we have created a transgenic mouse utilizing a Cre-lox promoter to control overexpression of human 15-lipoxygenase-1 (15-LOX-1). In this study, we sought to determine the effect of treating type 2 diabetic wild-type mice and transgenic mice ubiquitously overexpressing 15-LOX-1 with menhaden oil on endpoints related to DPN. Wild-type and transgenic mice on a C57Bl/6J background were divided into three groups. Two of each of these groups were used to create a high-fat diet/streptozotocin model for type 2 diabetes. The remaining mice were control groups. Four weeks later, one set of diabetic mice from each group was treated with menhaden oil for twelve weeks and then evaluated using DPN-related endpoints. Studies were also performed using dorsal root ganglion neurons isolated from wild-type and transgenic mice. Wild-type and transgenic diabetic mice developed DPN as determined by slowing of nerve conduction velocity, decreased sensory nerve fibers in the skin and cornea, and impairment of thermal and mechanical sensitivity of the hindpaw compared to their respective control mice. Although not significant, there was a trend for the severity of these DPN-related deficits to be less in the diabetic transgenic mice compared to the diabetic wild-type mice. Treating diabetic wild-type and transgenic mice with menhaden oil improved the DPN-related endpoints with a trend for greater improvement or protection by menhaden oil observed in the diabetic transgenic mice. Treating dorsal root ganglion neurons with docosahexanoic acid but not eicosapentaenoic acid significantly increased neurite outgrowth with greater efficacy observed with neurons isolated from transgenic mice. Targeting pathways that will increase the production of the anti-inflammatory metabolites of omega-3 PUFA may be an efficacious approach to developing an effective treatment for DPN.

    Topics: Animals; Arachidonate 15-Lipoxygenase; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Docosahexaenoic Acids; Fish Oils; Humans; Mice; Mice, Inbred C57BL; Mice, Transgenic; Peripheral Nervous System Diseases

2021
Resolvin D1 Ameliorates Nicotinamide-streptozotocin-induced Type 2 Diabetes Mellitus by its Anti-inflammatory Action and Modulating PI3K/Akt/mTOR Pathway in the Brain.
    Archives of medical research, 2020, Volume: 51, Issue:6

    To study whether resolvin D1 (RvD1), a metabolite of docosahexaenoic acid (DHA), prevents NA-STZ-induced type 2 diabetes mellitus (type 2 DM) in vivo and if so, what could be the mechanism of this action.. Single intra-peritoneal (i.p) injection of NA-STZ (175 mg/kg body weight of NA and 65 mg/kg of STZ) was injected simultaneously with RvD1 (60 ng/animal) (injected for 5 consecutive days) to Wistar rats. The effect of RvD1 on plasma glucose levels and apoptotic (Bcl2/Bax) and inflammatory (NF-κB/iNOS) protein expression, plasma lipoxin A4 and BDNF (brain-derived neurotrophic factor) were studied. Protein expressions of PI3k-Akt-mTOR pathway along with histopathological studies of brain were also evaluated.. NA-STZ-induced type 2 DM rats showed hyperglycemia, enhanced plasma IL-6/TNF-α (p ≤0.01), reduced plasma BDNF (p ≤0.01) and LXA4 (p ≤0.01) levels and low BDNF in pancreatic, hepatic and brain tissues (p <0.001), which were restored to near normal (p ≤0.01) in RvD1 treated group. RvD1 increased insulin sensitivity by suppressing inflammation (NF-κB/iNOS) (p ≤0.01) and decreasing apoptosis (Bcl2/Bax) and restoring BDNF and LXA4 levels to near normal. RvD1 treatment increased phosphorylation of Akt (Ser473), and subsequent activation (phosphorylation) of downstream signaling molecules of PI3K and mTOR indicating that RvD1 acts through PI3K/Akt/mTOR axis.. RvD1 is effective in preventing NA-STZ-induced type 2 DM in vivo by suppressing oxidative damage, enhancing the production of anti-inflammatory LXA4 and enhancing neuronal cell survival by augmenting the production of BDNF. Thus, RvD1 may be of benefit not only in preventing diabetes mellitus but also diabetes associated Alzheimer's disease and memory loss.

    Topics: Animals; Anti-Inflammatory Agents; Apoptosis; Brain; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Docosahexaenoic Acids; Humans; Male; Niacinamide; Phosphatidylinositol 3-Kinases; Proto-Oncogene Proteins c-akt; Rats; Rats, Wistar

2020
Effect of enriching the diet with menhaden oil or daily treatment with resolvin D1 on neuropathy in a mouse model of type 2 diabetes.
    Journal of neurophysiology, 2015, Volume: 114, Issue:1

    The purpose of this study was to determine the effect of supplementing the diet of a mouse model of type 2 diabetes with menhaden (fish) oil or daily treatment with resolvin D1 on diabetic neuropathy. The end points evaluated included motor and sensory nerve conduction velocity, thermal sensitivity, innervation of sensory nerves in the cornea and skin, and the retinal ganglion cell complex thickness. Menhaden oil is a natural source for n-3 polyunsaturated fatty acids, which have been shown to have beneficial effects in other diseases. Resolvin D1 is a metabolite of docosahexaenoic acid and is known to have anti-inflammatory and neuroprotective properties. To model type 2 diabetes, mice were fed a high-fat diet for 8 wk followed by a low dosage of streptozotocin. After 8 wk of hyperglycemia, mice in experimental groups were treated for 6 wk with menhaden oil in the diet or daily injections of 1 ng/g body wt resolvin D1. Our findings show that menhaden oil or resolvin D1 did not improve elevated blood glucose, HbA1C, or glucose utilization. Untreated diabetic mice were thermal hypoalgesic, had reduced motor and sensory nerve conduction velocities, had decreased innervation of the cornea and skin, and had thinner retinal ganglion cell complex. These end points were significantly improved with menhaden oil or resolvin D1 treatment. Exogenously, resolvin D1 stimulated neurite outgrowth from primary cultures of dorsal root ganglion neurons from normal mice. These studies suggest that n-3 polyunsaturated fatty acids derived from fish oil could be an effective treatment for diabetic neuropathy.

    Topics: Animals; Anti-Inflammatory Agents; Cells, Cultured; Cornea; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diabetic Neuropathies; Diet, High-Fat; Dietary Supplements; Docosahexaenoic Acids; Fish Oils; Ganglia, Spinal; Hot Temperature; Hyperalgesia; Mice, Inbred C57BL; Neural Conduction; Neurites; Neurons; Neuroprotective Agents; Retinal Ganglion Cells; Skin

2015
Resolution of Inflammation by Resolvin D1 Is Essential for Peroxisome Proliferator-activated Receptor-γ-mediated Analgesia during Postincisional Pain Development in Type 2 Diabetes.
    Anesthesiology, 2015, Volume: 123, Issue:6

    The wound healing process following acute inflammation after surgery is impaired in diabetes. Altered macrophage functions are linked to delayed tissue repair and pain development in diabetes. Although peroxisome proliferator-activated receptor (PPAR)-γ agonists are used to treat diabetes, their postoperative analgesic effects in diabetes have not been evaluated.. The PPARγ agonist rosiglitazone (rosi) was injected at the incision site of diabetic (db/db) mice with resolvin (Rv) D1, a lipid mediator involved in resolution of inflammation. Pain-related behavior, neutrophil infiltration, phagocytosis, and macrophage polarity were assessed for 7 days postoperatively.. Rosiglitazone and RvD1 alleviated mechanical hyperalgesia in db/db (db) mice, whereas rosiglitazone alone did not alter mechanical thresholds on days 4 (db rosi + RvD1 vs. db rosi: 0.506 ± 0.106 vs. 0.068 ± 0.12) and 7 (0.529 ± 0.184 vs. 0.153 ± 0.183) after incision (n = 10 per group). In control m/m mice, the rosiglitazone-induced analgesic effects were reversed by knockdown with arachidonate 5-lipoxygenase small interfering RNA, but these were restored by addition of RvD1. In db/db mice treated with rosiglitazone and RvD1, local infiltration of neutrophils was markedly reduced, with an associated decrease in total TdT-mediated dUTP nick-end labeling cells. Acceleration of rosiglitazone-induced phenotype conversion of infiltrated macrophages from M1 to M2 was impaired in db/db mice, but it was effectively restored by RvD1 in db/db wounds.. In diabetes, exogenous administration of RvD1 is essential for PPARγ-mediated analgesia during development of postincisional pain. Resolution of inflammation accelerated by RvD1 might promote PPARγ-mediated macrophage polarization to the M2 phenotype.

    Topics: Analgesia; Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Disease Models, Animal; Docosahexaenoic Acids; Hypoglycemic Agents; Inflammation; Macrophages; Male; Mice; Pain, Postoperative; PPAR gamma; Rosiglitazone; Thiazolidinediones

2015
Proresolution therapy for the treatment of delayed healing of diabetic wounds.
    Diabetes, 2013, Volume: 62, Issue:2

    Obesity and type 2 diabetes are emerging global epidemics associated with chronic, low-grade inflammation. A characteristic feature of type 2 diabetes is delayed wound healing, which increases the risk of recurrent infections, tissue necrosis, and limb amputation. In health, inflammation is actively resolved by endogenous mediators, such as the resolvins. D-series resolvins are generated from docosahexaenoic acid (DHA) and promote macrophage-mediated clearance of microbes and apoptotic cells. However, it is not clear how type 2 diabetes affects the resolution of inflammation. Here, we report that resolution of acute peritonitis is delayed in obese diabetic (db/db) mice. Altered resolution was associated with decreased apoptotic cell and Fc receptor-mediated macrophage clearance. Treatment with resolvin D1 (RvD1) enhanced resolution of peritonitis, decreased accumulation of apoptotic thymocytes in diabetic mice, and stimulated diabetic macrophage phagocytosis. Conversion of DHA to monohydroxydocosanoids, markers of resolvin biosynthesis, was attenuated in diabetic wounds, and local application of RvD1 accelerated wound closure and decreased accumulation of apoptotic cells and macrophages in the wounds. These findings support the notion that diabetes impairs resolution of wound healing and demonstrate that stimulating resolution with proresolving lipid mediators could be a novel approach to treating chronic, nonhealing wounds in patients with diabetes.

    Topics: Animals; Apoptosis; Diabetes Mellitus, Type 2; Docosahexaenoic Acids; Macrophages; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Peritonitis; Phagocytosis; Receptors, Fc; Thymocytes; Wound Healing

2013
Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2011, Volume: 25, Issue:7

    Type 2 diabetes and obesity have emerged as global public health crises. Adipose tissue expansion in obesity promotes accumulation of classically activated macrophages that perpetuate chronic inflammation and sustain insulin resistance. Acute inflammation normally resolves in an actively orchestrated series of molecular and cellular events that ensures return to homeostasis after an inflammatory insult, a process regulated in part by endogenous lipid mediators such as the resolvins. In this study, we sought to determine whether stimulating resolution with resolvin D1 (RvD1) improves insulin sensitivity by resolving chronic inflammation associated with obesity. In male leptin receptor-deficient (db/db) mice, treatment with RvD1 (2 μg/kg) improved glucose tolerance, decreased fasting blood glucose, and increased insulin-stimulated Akt phosphorylation in adipose tissue relative to vehicle-treated mice. Treatment with RvD1 increased adiponectin production, while expression of IL-6 in adipose tissue was decreased. The formation of crown-like structures rich in inflammatory F4/80(+)CD11c(+) macrophages was reduced by >50% in adipose tissue by RvD1 and was associated with an increased percentage of F4/80(+) cells expressing macrophage galactose-type C-type lectin 1 (MGL-1), a marker of alternatively activated macrophages. These results suggest that stimulating resolution with the endogenous proresolving mediator RvD1 could provide a novel therapeutic strategy for treating obesity-induced diabetes.

    Topics: Adiponectin; Adipose Tissue; Animals; Blood Glucose; Cytokines; Diabetes Mellitus, Type 2; Docosahexaenoic Acids; Glucose Tolerance Test; Hypoglycemic Agents; Immunoblotting; Inflammation Mediators; Insulin; Insulin Resistance; Macrophages; Male; Mice; Mice, Knockout; Obesity; Phosphorylation; PPAR gamma; Proto-Oncogene Proteins c-akt; Receptors, Formyl Peptide; Reverse Transcriptase Polymerase Chain Reaction

2011