resolvin-d1 and Atherosclerosis

resolvin-d1 has been researched along with Atherosclerosis* in 6 studies

Other Studies

6 other study(ies) available for resolvin-d1 and Atherosclerosis

ArticleYear
The resolvin D1 receptor GPR32 transduces inflammation resolution and atheroprotection.
    The Journal of clinical investigation, 2021, 12-15, Volume: 131, Issue:24

    Chronic inflammation is a hallmark of atherosclerosis and results from an imbalance between proinflammatory and proresolving signaling. The human GPR32 receptor, together with the ALX/FPR2 receptor, transduces biological actions of several proresolving mediators that stimulate resolution of inflammation. However, since no murine homologs of the human GPR32 receptor exist, comprehensive in vivo studies are lacking. Using human atherosclerotic lesions from carotid endarterectomies and creating a transgenic mouse model expressing human GPR32 on a Fpr2×ApoE double-KO background (hGPR32myc×Fpr2-/-×Apoe-/-), we investigated the role of GPR32 in atherosclerosis and self-limiting acute inflammation. GPR32 mRNA was reduced in human atherosclerotic lesions and correlated with the immune cell markers ARG1, NOS2, and FOXP3. Atherosclerotic lesions, necrotic core, and aortic inflammation were reduced in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice as compared with Fpr2-/-×Apoe-/- nontransgenic littermates. In a zymosan-induced peritonitis model, the hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice had reduced inflammation at 4 hours and enhanced proresolving macrophage responses at 24 hours compared with nontransgenic littermates. The GPR32 agonist aspirin-triggered resolvin D1 (AT-RvD1) regulated leukocyte responses, including enhancing macrophage phagocytosis and intracellular signaling in hGPR32mycTg×Fpr2-/-×Apoe-/- transgenic mice, but not in Fpr2-/-×Apoe-/- nontransgenic littermates. Together, these results provide evidence that GPR32 regulates resolution of inflammation and is atheroprotective in vivo.

    Topics: Animals; Atherosclerosis; Disease Models, Animal; Docosahexaenoic Acids; Female; Humans; Inflammation; Macrophages; Male; Mice; Mice, Knockout, ApoE; Peritonitis; Phagocytosis; Receptors, G-Protein-Coupled; Signal Transduction

2021
Native and myeloperoxidase-oxidized low-density lipoproteins act in synergy to induce release of resolvin-D1 from endothelial cells.
    Atherosclerosis, 2018, Volume: 272

    Oxidation of native low-density lipoproteins (LDLs-nat) plays an important role in the development of atherosclerosis. A major player in LDL-nat oxidation is myeloperoxidase (MPO), a heme enzyme present in azurophil granules of neutrophils and monocytes. MPO produces oxidized LDLs called Mox-LDLs, which cause a pro-inflammatory response in human microvascular endothelial cells (HMEC), monocyte/macrophage activation and formation of foam cells. Resolvin D1 (RvD1) is a compound derived from the metabolism of the polyunsaturated fatty acid DHA, which promotes resolution of inflammation at the ng/ml level.. In the present study, we used liquid chromatography-mass spectrometry (LC-MS/MS) to investigate the synthesis of RvD1 and its precursors - 17(S)-hydroxy docosahexaenoic acid (17S-HDHA) and docosahexaenoic acid (DHA) - by HMEC, in the presence of several concentrations of Mox-LDLs, copper-oxidized-LDLs (Ox-LDLs), and native LDLs or in mouse plasma. The LC-MS/MS method has been validated and applied to cell supernatants and plasma to measure production of RvD1 and its precursors in several conditions.. Mox-LDLs played a significant role in the synthesis of RvD1 and 17S-HDHA from DHA compared to Ox-LDLs. Moreover, Mox-LDLs and LDLs-nat acted in synergy to produce RvD1. In addition, different correlations were found between RvD1 and M1 macrophages, age of mice or Cl-Tyr/Tyr ratio.. These results suggest that although Mox-LDLs are known to be pro-inflammatory and deleterious in the context of atherosclerosis, they are also able to induce a pro-resolution effect by induction of RvD1 from HMEC. Finally, our data also suggest that HMEC can produce RvD1 on their own.

    Topics: Animals; Atherosclerosis; Calibration; Cell Line; Chromatography, Liquid; Copper; Docosahexaenoic Acids; Endothelial Cells; Humans; Inflammation; Limit of Detection; Lipids; Lipoproteins, LDL; Macrophages; Mass Spectrometry; Mice; Mice, Inbred C57BL; Oxygen; Peroxidase; Reactive Oxygen Species; RNA, Small Interfering

2018
Role of the Specialized Proresolving Mediator Resolvin D1 in Systemic Lupus Erythematosus: Preliminary Results.
    Journal of immunology research, 2018, Volume: 2018

    Systemic lupus erythematosus (SLE) is an autoimmune systemic disease and its pathogenesis has not yet been completely clarified. Patients with SLE show a deranged lipid metabolism, which can contribute to the immunopathogenesis of the disease and to the accelerated atherosclerosis. Resolvin D1 (RvD1), a product of the metabolism of the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), acts as a specialized proresolving mediator which can contribute in restoring the homeostasis in inflamed tissues. The aim of the present pilot study is to evaluate plasma levels of RvD1 in patients with SLE and healthy subjects, investigating its potential role as a biomarker of SLE and assessing its relationship with disease activity and laboratory parameters.. Thirty patients with SLE and thirty age- and sex-matched healthy subjects (HSs) have been consecutively recruited at Campus Bio-Medico University Hospital. RvD1 plasma levels were measured by ELISA according to the manufacturer's protocol (Cayman Chemical Co.). RvD1 levels were compared using Mann-Whitney test. Discriminatory ability for SLE has been evaluated by the area under the ROC curve.. The present preliminary study allows hypothesizing a dysregulation of RvD1 in patients with SLE, confirming the emerging role of bioactive lipids in this disease.

    Topics: Adult; Atherosclerosis; Biomarkers; Docosahexaenoic Acids; Female; Homeostasis; Humans; Inflammation; Lipid Metabolism; Lupus Erythematosus, Systemic; Male; Middle Aged; Pilot Projects

2018
Circulating inflammation-resolving lipid mediators RvD1 and DHA are decreased in patients with acutely symptomatic carotid disease.
    Prostaglandins, leukotrienes, and essential fatty acids, 2017, Volume: 125

    Efficient biomarkers for early prediction and diagnosis of an acutely symptomatic carotid plaque rupture event are currently lacking, impairing the ability to diagnose and treat patients with an acute plaque rupture events in a timely fashion. Resolvins are endogenous inflammation-resolving lipid mediators that are induced by inflammatory insults. We hypothesized that resolvin and other lipid profiles in sera likely mark the process towards plaque rupture.. Circulating lipids associated with plaque rupture events were quantitatively profiled via targeted mediator-lipidomics using ultraperformance liquid chromatography tandem mass spectrometry in patients with acutely symptomatic and asymptomatic carotid disease.. Resolvin D1 (RvD1, 82 ± 11pM vs. 152 ± 17pM, p = 0.001) and docosahexaenoic acid (DHA) (0.052 ± 0.007µM versus 0.076 ± 0.008µM, p = 0.025) levels are decreased in the sera of patients presenting with an acutely symptomatic carotid plaque rupture event (n = 21) compared to patients with asymptomatic (n = 24) high-grade carotid stenosis. Circulating arachidonic acid (AA) levels, however, were higher (0.429 ± 0.046µM versus 0.257 ± 0.035µM, p < 0.01) in acutely symptomatic compared to asymptomatic carotid patients. ROC curve analysis demonstrates that the serum ratio AA:RvD1 (AUC 0.84, sensitivity 0.71, specificity 0.92) and AA:DHA (AUC 0.86, sensitivity 0.90, specificity 0.71) are biomarkers for the risk of atherosclerotic plaque rupture.. A circulating pro-inflammatory lipid profile, characterized by high AA:RvD1 and AA:DHA, is associated with acutely symptomatic carotid disease and stroke.

    Topics: Aged; Arachidonic Acid; Atherosclerosis; Biomarkers; Docosahexaenoic Acids; Eicosanoids; Female; Humans; Inflammation; Male; Middle Aged

2017
Atherosclerosis: evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2008, Volume: 22, Issue:10

    Atherosclerosis is now recognized as an inflammatory disease involving the vascular wall. Recent results indicate that acute inflammation does not simply passively resolve as previously assumed but is actively terminated by a homeostatic process that is governed by specific lipid-derived mediators initiated by lipoxygenases. Experiments with animals and humans support a proinflammatory role for the 5-lipoxygenase system. In contrast, results from animal experiments show a range of responses with the 12/15-lipoxygenase pathways in atherosclerosis. To date, the only two clinical epidemiology human studies both support an antiatherogenic role for 12/15-lipoxygenase downstream actions. We tested the hypothesis that atherosclerosis results from a failure in the resolution of local inflammation by analyzing apolipoprotein E-deficient mice with 1) global leukocyte 12/15-lipoxygenase deficiency, 2) normal enzyme expression, or 3) macrophage-specific 12/15-lipoxygenase overexpression. Results from these indicate that 12/15-lipoxygenase expression protects mice against atherosclerosis via its role in the local biosynthesis of lipid mediators, including lipoxin A(4), resolvin D1, and protectin D1. These mediators exert potent agonist actions on macrophages and vascular endothelial cells that can control the magnitude of the local inflammatory response. Taken together, these findings suggest that a failure of local endogenous resolution mechanisms may underlie the unremitting inflammation that fuels atherosclerosis.

    Topics: Animals; Apolipoproteins E; Arachidonate 12-Lipoxygenase; Arachidonate 15-Lipoxygenase; Atherosclerosis; Docosahexaenoic Acids; Endothelium, Vascular; Humans; Interleukins; Lipoxins; Macrophages; Mice; Mice, Knockout; Vasculitis

2008
Endogenous pro-resolving and anti-inflammatory lipid mediators: the new hope of atherosclerotic diseases.
    Medical hypotheses, 2008, Volume: 71, Issue:2

    Atherosclerosis is a complex disease process in which genetic, lipid, cellular, and immunological factors combine to determine the location, severity, and timing of lesion development and clinical events. It has been demonstrated, however, that inflammation governed atherosclerosis during the course of development of atherosclerosis. It has also been demonstrated to be effective to decrease the cardiovascular events and improve the prognosis of atherosclerotic diseases by regulating inflammatory reaction (e.g., statins). However, endogenous mechanisms of limiting inflammation in atherosclerosis are still unclear. Recent studies showed that lipoxidase/leukotrienes (LOX/LTs) pathway played important role in the ignition and development of atherosclerosis, whereas resolvins (E-series resolvins and D-series resolvins) and protectins [protectin D1 (PD1) and neuroprotectin D1 (NPD1)], endogenous lipid-derived mediators, inhibited inflammation through pro-resolution and counter-modulating immune inflammation reaction in atherosclerosis. Hence, we hypothesize that increased endogenous lipid mediators mentioned above play a vital role in anti-atherosclerosis and plaque stabilization through pro-resolution and anti-inflammation by LOX/LTs pathway. In addition, we predict that the endogenous lipid mediators may be a new target for treatment of atherosclerotic diseases.

    Topics: Animals; Anti-Inflammatory Agents; Atherosclerosis; Dietary Supplements; Docosahexaenoic Acids; Fatty Acids, Omega-3; Humans; Immune System; Inflammation; Inflammation Mediators; Lipids; Models, Biological; Models, Theoretical

2008