resiniferatoxin and Vomiting

resiniferatoxin has been researched along with Vomiting* in 14 studies

Other Studies

14 other study(ies) available for resiniferatoxin and Vomiting

ArticleYear
Ultra-low doses of the transient receptor potential vanilloid 1 agonist, resiniferatoxin, prevents vomiting evoked by diverse emetogens in the least shrew (Cryptotis parva).
    Behavioural pharmacology, 2020, Volume: 31, Issue:1

    Published studies have shown that the transient receptor potential vanilloid 1 (TRPV1) receptor agonist, resiniferatoxin (RTX), has pro and antiemetic effects. RTX can suppress vomiting evoked by a variety of nonselective emetogens such as copper sulfate and cisplatin in several vomit-competent species. In the least shrew, we have already demonstrated that combinations of ultra-low doses of RTX and low doses of the cannabinoid CB1/2 receptor agonist delta-9-tetrahydrocannabinol (Δ-THC) produce additive antiemetic effects against cisplatin-evoked vomiting. In the current study, we investigated the broad-spectrum antiemetic potential of very low nonemetic doses of RTX against a diverse group of specific emetogens including selective and nonselective agonists of serotonergic 5-hydroxytrptamine (5-HT3) receptor (5-HT and 2-Me-5-HT), dopaminergic D2 receptor (apomorphine and quinpirole), cholinergic M1 receptor (pilocarpine and McN-A-343), as well as the selective substance P neurokinin NK1 receptor agonist GR73632, the selective L-Type calcium channel agonist FPL64176, and the sarcoplasmic endoplasmic reticulum calcium ATPase (SERCA) inhibitor thapsigargin. When administered subcutaneously, ultra-low (0.01 µg/kg) to low (5.0 µg/kg) doses of RTX suppressed vomiting induced by the aforementioned emetogens in a dose-dependent fashion with 50% inhibitory dose values ranging from 0.01 to 1.26 µg/kg. This study is the first to demonstrate that low nanomolar nonemetic doses of RTX have the capacity to completely abolish vomiting caused by diverse receptor specific emetogens in the least shrew model of emesis.

    Topics: Animals; Antiemetics; Diterpenes; Dronabinol; Female; Male; Receptors, Serotonin, 5-HT3; Shrews; TRPV Cation Channels; Vomiting

2020
Additive antiemetic efficacy of low-doses of the cannabinoid CB(1/2) receptor agonist Δ(9)-THC with ultralow-doses of the vanilloid TRPV1 receptor agonist resiniferatoxin in the least shrew (Cryptotis parva).
    European journal of pharmacology, 2014, Jan-05, Volume: 722

    Previous studies have shown that cannabinoid CB1/2 and vanilloid TRPV1 agonists (delta-9-tetrahydrocannabinol (Δ(9)-THC) and resiniferatoxin (RTX), respectively) can attenuate the emetic effects of chemotherapeutic agents such as cisplatin. In this study we used the least shrew to demonstrate whether combinations of varying doses of Δ(9)-THC with resiniferatoxin can produce additive antiemetic efficacy against cisplatin-induced vomiting. RTX by itself caused vomiting in a bell-shaped dose-dependent manner with maximal vomiting at 18 μg/kg when administered subcutaneously (s.c.) but not intraperitoneally (i.p.). Δ(9)-THC up to 10 mg/kg provides only 80% protection of least shrews from cisplatin-induced emesis with an ID50 of 0.3-1.8 mg/kg. Combinations of 1 or 5 μg/kg RTX with varying doses of Δ(9)-THC completely suppressed both the frequency and the percentage of shrews vomiting with ID50 dose values 5-50 times lower than Δ(9)-THC doses tested alone against cisplatin. A less potent TRPV1 agonist, capsaicin, by itself did not cause emesis (i.p. or s.c.), but it did significantly reduce vomiting induced by cisplatin given after 30 min but not at 2 h. The TRPV1-receptor antagonist, ruthenium red, attenuated cisplatin-induced emesis at 5mg/kg; however, another TRPV1-receptor antagonist, capsazepine, did not. In summary, we present evidence that combination of CB1/2 and TRPV1 agonists have the capacity to completely abolish cisplatin-induced emesis at doses that are ineffective when used individually.

    Topics: Animals; Antiemetics; Cannabinoid Receptor Agonists; Capsaicin; Cisplatin; Diterpenes; Dose-Response Relationship, Drug; Dronabinol; Drug Synergism; Female; Male; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Ruthenium Red; Shrews; TRPV Cation Channels; Vomiting

2014
Olvanil: a non-pungent TRPV1 activator has anti-emetic properties in the ferret.
    Neuropharmacology, 2010, Volume: 58, Issue:2

    Anti-emetic drugs such as the tachykinin NK(1) receptor antagonists are useful to control emesis induced by diverse challenges. Evidence suggests pungent capsaicin-like TRPV1 activators also have broad inhibitory anti-emetic activity. However, pungent compounds are associated with undesirable effects including adverse actions on the cardiovascular system and on temperature homeostasis. In the present investigations using the ferret, we examine if the non-pungent vanilloid, olvanil, has useful anti-emetic properties without adversely affecting behaviour, blood pressure or temperature control. Olvanil (0.05-5 mg/kg, s.c.) was compared to the pungent vanilloid, resiniferatoxin (RTX; 0.1 mg/kg, s.c.), and to the anandamide reuptake inhibitor, AM404 (10 mg/kg, s.c.), for a potential to inhibit emesis induced by apomorphine (0.25 mg/kg, s.c.), copper sulphate (50 mg/kg, intragastric), and cisplatin (10 mg/kg, i.p.). Changes in blood pressure and temperature were also recorded using radiotelemetry implants. In peripheral administration studies, RTX caused transient hypertension, hypothermia and reduced food and water intake, but also significantly inhibited emesis induced by apomorphine, copper sulphate, or cisplatin. Olvanil did not have a similar adverse profile, and antagonised apomorphine- and cisplatin-induced emesis but not that induced by copper sulphate. AM404 reduced only emesis induced by cisplatin without affecting other parameters measured. Following intracerebral administration only olvanil antagonised cisplatin-induced emesis, but this was associated with transient hypothermia. In conclusion, olvanil demonstrated clear anti-emetic activity in the absence of overt cardiovascular, homeostatic, or behavioural effects associated with the pungent vanilloid, RTX. Our studies indicate that non-pungent vanilloids may have a useful spectrum of anti-emetic properties via central and/or peripheral mechanisms after peripheral administration.

    Topics: Animals; Antiemetics; Apomorphine; Arachidonic Acids; Behavior, Animal; Blood Pressure; Body Temperature; Capsaicin; Cisplatin; Copper Sulfate; Diterpenes; Dose-Response Relationship, Drug; Ferrets; Heart Rate; Male; TRPV Cation Channels; Vomiting

2010
Evaluation of the anti-emetic potential of anti-migraine drugs to prevent resiniferatoxin-induced emesis in Suncus murinus (house musk shrew).
    European journal of pharmacology, 2005, Jan-31, Volume: 508, Issue:1-3

    Activation of vanilloid receptors has commonly been used to facilitate neurogenic inflammation and plasma exudation to model components of the pathogenesis of migraine; however, these studies have been performed mainly in species lacking the emetic reflex. In the present studies, therefore, we used Suncus murinus, a species of insectivore capable of emesis, to investigate if the vanilloid receptor agonist resiniferatoxin is capable of modeling the emesis associated with migraine. Resiniferatoxin (100 nmol/kg, s.c.) induced an emetic response that was antagonized significantly (P<0.05) by ruthenium red (1-3 micromol), (2R-trans)-4-[1-[3,5-bis(trifluromethyl)benzoyl]-2-(phenylmethyl)-4-piperidinyl]-N-(2,6-dimethylphenyl)-1-acetamide (S)-hydroxybutanedioate (R116301; 10-100 micromol/kg), and scopolamine (1 micromol/kg), but not by dihydroergotamine (0.3-3 micromol/kg), sumatriptan (1-10 micromol/kg), methysergide (1-10 micromol/kg), tropanyl 3,5-dichlorobenzoate (MDL72222; 3-30 micromol/kg), ondansetron (0.3-3 micromol/kg), metoclopramide (3-30 micromol/kg), domperidone (3-30 micromol/kg), diphenhydramine (1-10 micromol/kg), or indomethacin (3-30 micromol/kg). The failure of a wide range of representative anti-migraine drugs to reduce retching and vomiting limits the use of this model to identify/investigate novel treatments for the emesis (and nausea) associated with migraine attacks in humans. However, the results provide further evidence for the involvement of a novel vanilloid receptor in resiniferatoxin-induced emesis and implicate both tachykinins and acetylcholine in the pathway(s) activated by resiniferatoxin in S. murinus.

    Topics: Animals; Antiemetics; Butanols; Capsaicin; Cyclooxygenase Inhibitors; Dihydroergotamine; Diphenhydramine; Diterpenes; Domperidone; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Indomethacin; Malates; Methysergide; Metoclopramide; Migraine Disorders; Ondansetron; Piperidines; Ruthenium Red; Scopolamine; Serotonin Antagonists; Serotonin Receptor Agonists; Shrews; Sumatriptan; Time Factors; Tropanes; Vomiting

2005
An arterially perfused decerebrate preparation of Suncus murinus (house musk shrew) for the study of emesis and swallowing.
    Experimental physiology, 2002, Volume: 87, Issue:5

    Arterially perfused, decerebrate preparations of the insectivore, Suncus murinus were made to determine whether the emetic reflex could be activated in such a preparation using a range of stimuli shown to be emetic in conscious or anaesthetised Suncus. Efferent phrenic and vagus nerve activities and electromyograms (EMGs) from the temporalis, abdominal oesophagus and trapezius muscles were recorded, as well as longitudinal shortening of the oesophagus and dorso-ventral movements of the thorax. The preparations swallowed spontaneously every 0.6 to 6.5 min. The duration of a swallow was 3.1 +/- 0.3 s (recorded as the time taken for the oesophagus to shorten and recover to its resting position) and the oesophagus shortened by 3.5 +/- 0.4 mm during a swallow. The emetic reflex was activated by electrical stimulation (30 Hz, 10-20 V, 0.2 ms pulse width, for 30 s) of abdominal vagal afferents (latency < 30 s) or by arterial perfusion with either 40 nM of the capsaicin analogue resiniferatoxin (latency 1.7 +/- 0.6 min), 6 microM nicotine (latency 1.6 +/- 0.1 min) or 1 microM of the phosphodiesterase IV inhibitor CP-80,633 (latency 8.9 +/- 3.9 min). These emetic stimuli produced somatic and visceral movements in Suncus preparations indicative of activation of the emetic reflex. There were pronounced contractions of the thorax that occurred simultaneously with oesophageal shortening and mouth opening, separated by thorax expansion and a burst of phrenic nerve activity. During emetic-like episodes, oesophageal shortenings were only 0.84 +/- 0.1 s in duration, faster than the duration of shortening observed during swallowing (cf. swallowing, 3.1 +/- 0.3 s; P < 0.0001). The shortening of the oesophagus during emetic-like episodes was 6.2 +/- 0.4 mm, which was greater than the shortening seen during swallowing (cf. swallowing, 3.5 +/- 0.4 mm; P < 0.0001). We conclude that the emetic reflex can be activated in our Suncus preparations and that this non-sentient small adult animal model can now be used to study the neurophysiology and pharmacology of swallowing and emesis.

    Topics: Animals; Aorta, Thoracic; Decerebrate State; Deglutition; Disease Models, Animal; Diterpenes; Electric Stimulation; Esophagus; Female; Heart Rate; Male; Naloxone; Narcotic Antagonists; Nicotine; Nicotinic Agonists; Perfusion; Phrenic Nerve; Physical Stimulation; Pyrimidinones; Reflex; Respiratory Mechanics; Shrews; Vagus Nerve; Video Recording; Vomiting

2002
Resiniferatoxin antagonizes cisplatin-induced emesis in dogs and ferrets.
    European journal of pharmacology, 2002, May-10, Volume: 442, Issue:3

    We evaluated the antiemetic activity of resiniferatoxin, an ultrapotent capsaicin analogue, on cisplatin- and apomorphine-induced emesis in dogs, and on cisplatin-induced acute and delayed emesis in ferrets. In the dog, resiniferatoxin (10 microg/kg, s.c.) 30 min before the injection of cisplatin markedly prevented acute emesis induced by cisplatin. When animals were given resiniferatoxin (10 microg/kg, s.c.) 24 h prior to cisplatin, the emesis was still inhibited, but not significantly. Resiniferatoxin (10 microg/kg, s.c.) 30 min before the administration of apomorphine also significantly reduced the emetic responses induced by apomorphine in dogs. In the ferret, resiniferatoxin (10 microg/kg, s.c.) 30 min prior to cisplatin completely inhibited acute emesis caused by cisplatin (10 mg/kg, i.p.). When ferrets were given resiniferatoxin (10 microg/kg, s.c.) 16 h prior to cisplatin, the emesis was still significantly inhibited. Cisplatin (5 mg/kg, i.p.) induced both acute (0-24 h) and delayed (24-72 h) phase emesis, and a single injection of resiniferatoxin (10 microg/kg, s.c.) at 36 h after cisplatin significantly reduced subsequent emetic responses during the 36-72 h period. These results suggest that resiniferatoxin-related vanilloids may be useful drugs against both acute and delayed emesis induced by cancer chemotherapy.

    Topics: Acute Disease; Animals; Antineoplastic Agents; Antiparkinson Agents; Apomorphine; Cisplatin; Diterpenes; Dogs; Female; Ferrets; Male; Time Factors; Vomiting

2002
Genital grooming and emesis induced by vanilloids in Suncus murinus, the house musk shrew.
    European journal of pharmacology, 2001, Jun-22, Volume: 422, Issue:1-3

    The potential of resiniferatoxin and capsaicin to modulate emesis and genital grooming was investigated in Suncus murinus. Resinifertoxin (3-30 nmol, i.c.v.), E-capsaicin (10-100 nmol, i.c.v.) and Z-capsaicin (100 nmol, i.c.v.) induced emesis (P<0.05) and subsequently antagonised the emetic response induced by intragastric copper sulphate (480.6 micromol/kg; P<0.05). However, resiniferatoxin failed to affect nicotine-induced (30.7 mol/kg, s.c.) emesis (P>0.05). Only resiniferatoxin induced genital grooming that was antagonised (P<0.05) by capsazepine (300-600 nmol, i.c.v.) and ruthenium red (3 nmol, i.c.v.). E-capsaicin-induced emesis was antagonised by capsazepine (300-600 nmol, i.c.v.; P<0.05) and ruthenium red (3 nmol, i.c.v.; P<0.05) but resiniferatoxin-induced emesis was resistant to capsazepine (30-600 nmol, i.c.v.; P>0.05). The emetic action of resiniferatoxin but not E-capsaicin was subject to tachyphylaxis. In cross-tachyphylaxis experiments, E-capsaicin reduced the genital grooming induced by resiniferatoxin (P<0.05). The data are discussed in relation to the classification of vanilloid receptors and mechanisms involved in emesis and genital grooming.

    Topics: Animals; Behavior, Animal; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Grooming; Injections, Intraventricular; Male; Sexual Behavior, Animal; Shrews; Time Factors; Vomiting

2001
The development of the emetic reflex in the house musk shrew, Suncus murinus.
    Brain research. Developmental brain research, 2000, May-11, Volume: 121, Issue:1

    The emetic (retching and vomiting) reflex is an important component of the body's defence system against accidentally ingested toxins and emesis is also a common symptom of disease and a side-effect of a number of pharmacological therapies. The development of the reflex has been the subject of few systematic studies. The aim of this study was to characterise the development of the emetic reflex in Suncus murinus (the house musk shrew) using emetic stimuli acting via three different afferent pathways: motion via the vestibular system, pyrogallol via abdominal vagal afferents and resiniferatoxin (a capsaicin analog) via the brainstem. The emetic reflex was not present to any stimulus prior to postnatal day 10 but the onset of the response to motion lagged behind that to the other stimuli in not being present until postnatal day 15. Body weight was not a determinant of the presence of the reflex. It is proposed that the delayed presence of the emetic reflex in Suncus makes it an ideal species in which to investigate factors regulating its development.

    Topics: Age Factors; Animals; Body Weight; Diterpenes; Female; Male; Motion Sickness; Neurotoxins; Pyrogallol; Reflex; Shrews; Solitary Nucleus; Substance P; Vagus Nerve; Vestibule, Labyrinth; Vomiting

2000
The emetic and anti-emetic effects of the capsaicin analogue resiniferatoxin in Suncus murinus, the house musk shrew.
    British journal of pharmacology, 2000, Volume: 130, Issue:6

    1. In SUNCUS: murinus the ultrapotent capsaicin analogue resiniferatoxin (RTX) induced an emetic response in the dose range 1 - 1000 microg kg(-1), s.c. The latency was inversely related to dose and ranged from 41.2+/-4.4 min. (1 microg kg(-1), s.c.) to 2.7+/-0.6 min. (1000 microg kg(-1), s.c.). 2. The emetic response to RTX (10 or 100 microg kg(-1), s.c.) was blocked or markedly reduced by pre-treatment with RTX (100 microg kg(-1), s.c.), 8-OH-DPAT (100 microg kg(-1), s.c.), morphine (2 mg kg(-1), s.c.), neonatal capsaicin (100 mg kg(-1), s.c.) and the NK(1) receptor antagonist CP-99,994 (10 - 20 mg kg(-1), s.c.) but not by the 5-HT(3) receptor antagonist tropisetron (200 microg kg(-1), s.c.). 3. RTX (100 microg kg(-1), s.c.) induced c-fos-like immunoreactivity in the area postrema and parts of the nucleus tractus solitarius. This pattern is consistent with the proposal that the emetic effect is mediated via one or both of these structures and an involvement of substance P is discussed. 4. RTX (10 and 100 microg kg(-1), s.c.) had broad-spectrum antiemetic effects in Suncus as indicated by its ability to block or markedly reduce the emetic response to motion (1 Hz, 4 cm lateral, 10 min.), cisplatin (20 mg kg(-1), i.p.), intragastric copper sulphate (40 mg kg(-1), p.o.), nicotine (10 mg kg(-1), s.c.) and RTX (100 microg kg(-1), s.c.) itself. 5. It is proposed that the site of the anti-emetic effect is in the nucleus tractus solitarius and mechanisms involving the modulation of substance P release are discussed. 6. The general utility of SUNCUS: for investigations of vanilloid receptors is reviewed in the light of the exquisite sensitivity of the emetic reflex in this species to resiniferatoxin.

    Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Abdomen; Animals; Animals, Newborn; Antiemetics; Behavior, Animal; Capsaicin; Cisplatin; Copper Sulfate; Diterpenes; Dose-Response Relationship, Drug; Female; Indoles; Injections, Intraventricular; Male; Medulla Oblongata; Morphine; Motion Sickness; Nicotine; Piperidines; Proto-Oncogene Proteins c-fos; Serotonin Receptor Agonists; Shrews; Tropisetron; Vagotomy; Vomiting

2000
Structural optimization affording 2-(R)-(1-(R)-3, 5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4- (3-oxo-1,2,4-triazol-5-yl)methylmorpholine, a potent, orally active, long-acting morpholine acetal human NK-1 receptor antagonist.
    Journal of medicinal chemistry, 1998, Nov-05, Volume: 41, Issue:23

    Structural modifications requiring novel synthetic chemistry were made to the morpholine acetal human neurokinin-1 (hNK-1) receptor antagonist 4, and this resulted in the discovery of 2-(R)-(1-(R)-3, 5-bis(trifluoromethyl)phenylethoxy)-3-(S)-(4-fluoro)phenyl-4-(3-ox o-1 ,2,4-triazol-5-yl)methyl morpholine (17). This modified compound is a potent, long-acting hNK-1 receptor antagonist as evidenced by its ability to displace [125I]Substance P from hNK-1 receptors stably expressed in CHO cells (IC50 = 0.09 +/- 0.06 nM) and by the measurement of the rates of association (k1 = 2.8 +/- 1.1 x 10(8) M-1 min-1) and dissociation (k-1 = 0.0054 +/- 0.003 min-1) of 17 from hNK-1 expressed in Sf9 membranes which yields Kd = 19 +/- 12 pM and a t1/2 for receptor occupancy equal to 154 +/- 75 min. Inflammation in the guinea pig induced by a resiniferatoxin challenge (with NK-1 receptor activation mediating the subsequent increase in vascular permeability) is inhibited in a dose-dependent manner by the oral preadmininstration of 17 (IC50 (1 h) = 0.008 mg/kg; IC90 (24 h) = 1.8 mg/kg), indicating that this compound has good oral bioavailbility and peripheral duration of action. Central hNK-1 receptor stimulation is also inhibited by the systemic preadministration of 17 as shown by its ability to block an NK-1 agonist-induced foot tapping response in gerbils (IC50 (4 h) = 0.04 +/- 0.006 mg/kg; IC50 (24 h) = 0.33 +/- 0.017 mg/kg) and by its antiemetic actions in the ferret against cisplatin challenge. The activity of 17 at extended time points in these preclinical animal models sets it apart from earlier morpholine antagonists (such as 4), and the piperidine antagonists 2 and 3 and could prove to be an advantage in the treatment of chronic disorders related to the actions of Substance P. In part on the basis of these data, 17 has been identified as a potential clinical candidate for the treatment of peripheral pain, migraine, chemotherapy-induced emesis, and various psychiatric disorders.

    Topics: Acetals; Administration, Oral; Animals; Aprepitant; Behavior, Animal; Binding, Competitive; Capillary Permeability; Cell Line; CHO Cells; Cricetinae; Diterpenes; Esophagus; Female; Ferrets; Gerbillinae; Hindlimb; Humans; Inflammation; Male; Morpholines; Neurokinin-1 Receptor Antagonists; Trachea; Urinary Bladder; Vomiting

1998
Capsaicin in the 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons.
    European journal of pharmacology, 1997, Nov-27, Volume: 339, Issue:2-3

    Systemic tachykinin NK1 receptor antagonists and resiniferatoxin are known to abolish vomiting mediated by vagal afferents. Emetic vagal afferents have been shown to make synaptic contact with neurons in the medial solitary nucleus. These results suggest that substance P participates in the synapse as a mediator. To examine this possibility, the effects of 4th-ventricular application of capsaicin (0.033-33 mM, 20-30 microl) and resiniferatoxin (1.6-160 microM, 20-30 microl) on the activity of neurons in the medial solitary nucleus and fictive retching induced by vagal stimulation were observed in paralyzed decerebrate dogs. Capsaicin (33 mM) and resiniferatoxin (160 microM) initially increased the neuronal firing and occasionally produced retching, then abolished both neuronal and retching responses. However, stimulation of the medial solitary nucleus continued to provoke retching. Field potential changes in the medial solitary nucleus evoked by pulse-train vagal stimulation decreased in amplitude, but did not disappear. Latencies of neuronal firing and evoked potentials were about 300 ms. These results suggest that emetic vagal afferents are capsaicin-sensitive C fibers which may have substance P as an excitatory transmitter or modulator.

    Topics: Animals; Capsaicin; Diterpenes; Dogs; Female; Male; Neurons, Afferent; Solitary Nucleus; Vagus Nerve; Vomiting

1997
The pharmacology of the emetic response to upper gastrointestinal tract stimulation in Suncus murinus.
    European journal of pharmacology, 1996, Jul-04, Volume: 307, Issue:3

    This paper is the first to describe aspects of the mechanics of retching in the insectivore Suncus murinus (house musk shrew) and in an animal of such a small size (approximately 50 g). In anaesthetised animals using the novel stimulus of mechanical stimulation of the upper gastrointestinal tract as the provocative stimulus the frequency of retching was found to be about 4 retches/s, a much higher frequency than in other species (dog, cat, ferret). These studies show that quantification of retching in Suncus cannot be undertaken using direct observation. The temporal pattern of the emetic response was characterised in conscious Suncus using motion (1 Hz, 5 min) and nicotine (20 mg/kg s.c.). The ultrapotent capsaicin analogue resiniferatoxin (100 micrograms/kg s.c.) was discovered to be highly emetic and comparative studies showed that nicotine and resiniferatoxin induced the most intense responses with episodes (retches and a vomit) occurring every 10-15 s. The retching response to mechanical stimulation in the anaesthetised Suncus was not blocked by a 5-HT3 receptor antagonist (granisetron, 1-5 mg/kg s.c.), a tachykinin NK1 receptor antagonist (CP-99,994 20 mg/kg s.c. dihydrochloride salt (9+) -(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine) or morphine (2 mg/kg s.c.) but was blocked by the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT 100 micrograms/kg s.c.). Suncus appears to be a suitable animal in which to study the pharmacology of the emetic response to mechanical stimulation of the gut. The results are discussed in the light of studies of the pharmacology of emesis in other species.

    Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Animals; Digestive System Physiological Phenomena; Diterpenes; Granisetron; Male; Morphine; Motion; Neurokinin-1 Receptor Antagonists; Nicotine; Piperidines; Receptors, Serotonin; Receptors, Serotonin, 5-HT3; Serotonin Antagonists; Serotonin Receptor Agonists; Shrews; Vomiting

1996
Tachykinin NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets.
    Neuropharmacology, 1996, Volume: 35, Issue:8

    These studies have compared the pharmacological profile of two non-peptide human type neurokinin1 (hNK1) receptor selective antagonists, L-741,671 and a quaternised compound L-743,310. In radioligand binding studies L-741,671 and L-743,310 had high affinity for ferret and cloned hNK1 receptors [Ki (nM) ferret 0.7 and 0.1; human 0.03 and 0.06, respectively] but low affinity for rodent NK1 receptors [Ki (nM) 64 and 17, respectively] suggesting that ferret receptors have hNK1-like binding pharmacology. Studies in vivo showed that L-741,671 and L-743,310 had equivalent functional activity in the periphery (ID50s of 1.6 and 2 micrograms/kg i.v., respectively) as measured by inhibition of plasma protein extravasation evoked in the oesophagus of guinea pigs by resiniferatoxin (7 nmol/kg i.v.). Using an in situ brain perfusion technique in anaesthetised rats, L-741,671 was shown to be much more brain penetrant than the quaternary compound L-743,310 which had an entry rate similar to the poorly brain penetrant plasma marker inulin. These compounds thus provided an opportunity to compare the anti-emetic effects of equi-active hNK1 receptor antagonists with and without brain penetration to central NK1 receptor sites. When tested against cisplatin-induced emesis in ferrets, L-741,671 (0.3, 1 and 3 mg/kg i.v.) produced marked dose-dependent inhibition of retching and vomiting but L-743,310 was inactive at 3 and 10 micrograms/kg i.v. In contrast, direct central injection of L-741,671 and L-743,310 (30 micrograms) into the vicinity of the nucleus tractus solitarius or L-743,310 (200 micrograms) intracisternally was shown to inhibit retching and vomiting induced by i.v. cisplatin. L-741,671 and L-743,310 had equivalent functional activity, at the same dose, against cisplatin-induced emesis when injected centrally. These observations indicated that had L-743,310 penetrated into the brain after systemic administration it would have been active in the cisplatin-induced emesis assay and so show that brain penetration is essential for the anti-emetic action of systemically administered NK1 receptor antagonists.

    Topics: Animals; Antiemetics; Antineoplastic Agents; Blood Proteins; Brain Chemistry; Cell Line; Cisplatin; Diterpenes; Ferrets; Guinea Pigs; Indoles; Ligands; Male; Neurokinin-1 Receptor Antagonists; Neurotoxins; Piperidines; Radioligand Assay; Receptors, Neurokinin-1; Triazoles; Vomiting

1996
Resinferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret.
    Neuropharmacology, 1993, Volume: 32, Issue:8

    Resinferatoxin (100 micrograms/kg, s.c.), the ultrapotent analogue of capsaicin, when given acutely blocked radiation-(200 rads) and copper sulphate (40 mg% 30 ml, p.o.)-induced emesis in ferrets and substantially decreased loperamide (0.5 mg/kg, s.c.)-induced vomiting, without significantly affecting the von Bezold-Jarisch reflex or gag reflex. It also produced a decrease in core temperature as has been reported for capsaicin. The observation that resinferatoxin reduced or blocked emesis induced by both centrally (loperamide) and peripherally (CuSO4, radiation) acting stimuli suggests a novel anti-emetic action that may provide an insight into clinically useful innovative anti-emetics. The mechanism by which resinferatoxin has its anti-emetic effect is at present unknown, although the combination of results from the present study suggest a central site of action involving modulation of release of neurotransmitter, possibly in the nucleus tractus solitarius.

    Topics: Animals; Antiemetics; Behavior, Animal; Blood Pressure; Body Temperature; Capsaicin; Copper; Copper Sulfate; Diterpenes; Dose-Response Relationship, Drug; Female; Ferrets; Gagging; Heart Rate; Loperamide; Male; Radiation Injuries; Reflex; Respiration; Vomiting

1993