resiniferatoxin and Osteosarcoma

resiniferatoxin has been researched along with Osteosarcoma* in 3 studies

Other Studies

3 other study(ies) available for resiniferatoxin and Osteosarcoma

ArticleYear
Bortezomib and endocannabinoid/endovanilloid system: a synergism in osteosarcoma.
    Pharmacological research, 2018, Volume: 137

    Osteosarcoma is the most common primary malignant tumor of bone in children and adolescents. Bortezomib (BTZ) is an approved anticancer drug, classified as a selective reversible inhibitor of the ubiquitin-dependent proteasome system, that leads to cancer cell cycle arrest and apoptosis reducing the invasion ability of Osteosarcoma cells in vitro. It also regulates the RANK/RANKL/OPG system, involved in the pathogenesis of bone tumors and in cell migration. A side effect of BTZ is to induce painful sensory peripheral neuropathy which lead to cessation of therapy or dose reduction. Recently BTZ has been evaluated in combination with Cannabinoids targeting CB1 receptor, demonstrating a promising synergic effect. The Endocannabinoid/Endovanilloid (EC/EV) system includes two G protein-coupled receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel and their endogenous ligands and enzymes. CB1 and CB2 are expressed mainly in Central Nervous System and Immune Peripheral cells respectively. TRPV1 is also expressed in primary sensory neurons and is involved in pain modulation. EC/EV system induces apoptosis, reduces invasion and cell proliferation in Osteosarcoma cell lines and is involved in bone metabolism. We analyzed the effects of BTZ, alone and in combination with selective agonists at CB2 (JWH-133) and TRPV1 (RTX) receptors, in the Osteosarcoma cell line (HOS) on Apoptosis, Cell Cycle progression, migration and bone balance. We observed that the stimulation of CB2 and TRPV1 receptors increase the efficacy of BTZ in inducing apoptosis and reducing invasion, cell cycle progression and by modulating bone balance. These data suggest the possibility to use BTZ, in combination with EC/EV agonists, in Osteosarcoma therapy reducing its dose and its side effects.

    Topics: Antineoplastic Agents; Bone Neoplasms; Bortezomib; Cannabinoids; Cell Line, Tumor; Diterpenes; Drug Synergism; Humans; Osteosarcoma; Receptor, Cannabinoid, CB2; TRPV Cation Channels

2018
In vitro sarcoma cells release a lipophilic substance that activates the pain transduction system via TRPV1.
    Annals of surgical oncology, 2011, Volume: 18, Issue:3

    Despite success in treating many forms of cancer, pain associated with malignancy remains a serious clinical issue with a poorly understood etiology. This study determined if certain sarcoma cell lines produced a soluble factor that activates the TRPV1 ion channel expressed on nociceptive sensory neurons, thereby activating a major pain transduction system.. Trigeminal ganglia were harvested from rats and cultured. A rhabdomyosarcoma (CRL1598) and osteosarcoma (CRL 1543) cell line were grown to 75% confluency. Conditioned media (CM) was collected after 24 h of exposure and subjected to reverse phase chromatography. Neuronal activation in the presence of CM was measured using iCGRP RIA and calcium imaging after treatment with vehicle or I-RTX, a potent TRPV1 antagonist. Data were analyzed by ANOVA/Bonferroni or t test.. The rhabdomyosarcoma CM produced a 4-fold increase in iCGRP release compared with control media (P < 0.001). The osteosarcoma cell line CM produced a 7-fold increase in iCGRP release compared with control media (P < 0.001). This evoked iCGRP release was via TRPV1 activation since the effect was blocked by the antagonist I-RTX. The application of rhabdomyosarcoma CM produced about a 4-fold increase in [Ca(2+)]I levels (P < 0.001), and this effect was blocked by pretreatment with the TRPV1 antagonist, I-RTX.. We have shown that certain sarcoma cell lines produce a soluble, lipophilic factor that activates the peripheral nociceptor transduction system via TRPV1 activation, thereby contributing to cancer pain. Further investigations are needed to develop tumor-specific analgesics that do not produce unwanted or harmful side-effects.

    Topics: Animals; Bone Neoplasms; Calcitonin Gene-Related Peptide; Calcium; Culture Media, Conditioned; Diterpenes; Humans; Male; Nociceptors; Osteosarcoma; Pain; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Rhabdomyosarcoma; TRPV Cation Channels; Tumor Cells, Cultured

2011
Analgesic effects of capsazepine and resiniferatoxin on bone cancer pain in mice.
    Neuroscience letters, 2006, Jan-23, Volume: 393, Issue:1

    In the present paper, we describe the analgesic effects induced by the transient receptor potential vanilloid type 1 (TRPV1) antagonist, capsazepine, and the TRPV1 agonist, resiniferatoxin, on the thermal hyperalgesia induced by the presence of a tibial osteosarcoma or an inflammatory process in mice. The administration of capsazepine abolished the osteosarcoma-induced hyperalgesia at a dose range (3-10 mg/kg; s.c.) ineffective to inhibit the hyperalgesia elicited by the intraplantar administration of complete Freund's adjuvant (CFA). In contrast, the administration of resiniferatoxin (0.01-0.1 mg/kg; s.c.) inhibited both the osteosarcoma- and the CFA-induced hyperalgesia. Remarkably, a single dose of resiniferatoxin abolished the osteosarcoma-induced hyperalgesia for several days and completely prevented the instauration of thermal hyperalgesia when administered at the initial stages of osteosarcoma development. The potential of drugs acting through TRPV1 for the management of some types of bone cancer pain is proposed.

    Topics: Analgesics; Analysis of Variance; Animals; Bone Neoplasms; Capsaicin; Cell Line; Disease Models, Animal; Diterpenes; Dose-Response Relationship, Drug; Freund's Adjuvant; Functional Laterality; Inflammation; Mice; Mice, Inbred C3H; Osteosarcoma; Pain; Pain Measurement; Reaction Time; Time Factors

2006