resiniferatoxin has been researched along with Neurogenic-Inflammation* in 6 studies
6 other study(ies) available for resiniferatoxin and Neurogenic-Inflammation
Article | Year |
---|---|
Capsaicin-Sensitive Peptidergic Sensory Nerves Are Anti-Inflammatory Gatekeepers in the Hyperacute Phase of a Mouse Rheumatoid Arthritis Model.
Capsaicin-sensitive peptidergic sensory nerves play complex, mainly protective regulatory roles in the inflammatory cascade of the joints via neuropeptide mediators, but the mechanisms of the hyperacute arthritis phase has not been investigated. Therefore, we studied the involvement of these afferents in the early, "black box" period of a rheumatoid arthritis (RA) mouse model. Capsaicin-sensitive fibres were defunctionalized by pretreatment with the ultrapotent capsaicin analog resiniferatoxin and arthritis was induced by K/BxN arthritogenic serum. Disease severity was assessed by clinical scoring, reactive oxygen species (ROS) burst by chemiluminescent, vascular permeability by fluorescent in vivo imaging. Contrast-enhanced magnetic resonance imaging was used to correlate the functional and morphological changes. After sensory desensitization, both early phase ROS-burst and vascular leakage were significantly enhanced, which was later followed by the increased clinical severity scores. Furthermore, the early vascular leakage and ROS-burst were found to be good predictors of later arthritis severity. We conclude that the anti-inflammatory role of peptidergic afferents depends on their activity in the hyperacute phase, characterized by decreased cellular and vascular inflammatory components presumably via anti-inflammatory neuropeptide release. Therefore, these fibres might serve as important gatekeepers in RA. Topics: Animals; Anti-Inflammatory Agents; Arthritis, Experimental; Arthritis, Rheumatoid; Capsaicin; Diterpenes; Male; Mice; Mice, Inbred BALB C; Neurogenic Inflammation; Neuropeptides; Reactive Oxygen Species; Sensory System Agents | 2021 |
A pH-sensitive, neurogenic pathway mediates disease severity in a model of post-ERCP pancreatitis.
Endoscopic retrograde cholangiopancreatography (ERCP) has a high risk of pancreatitis although the underlying mechanisms are unclear. Transient receptor potential vanilloid 1 (TRPV1) is a cation channel expressed on C and Adelta fibres of primary sensory neurons and is activated by low pH. TRPV1 activation causes release of inflammatory mediators that produce oedema and neutrophil infiltration. We previously demonstrated that neurogenic factors contribute to the pathogenesis of pancreatitis. Resiniferatoxin (RTX) is a TRPV1 agonist that, in high doses, defunctionalises C and Adelta fibres. When we discovered that the pH of radio-opaque contrast solutions used for ERCP was 6.9, we hypothesised that low pH may contribute to the development of contrast-induced pancreatitis via activation of TRPV1.. Rats underwent equal pressure pancreatic ductal injection of contrast solutions at varying pH with or without RTX.. Contrast solution (pH 6.9) injected into the pancreatic duct caused a significant increase in pancreatic oedema, serum amylase, neutrophil infiltration, and histological damage. Solutions of pH 7.3 injected at equal pressure caused little damage. The severity of the pancreatitis was significantly increased by injection of solutions at pH 6.0. To determine if the effects of low pH were mediated by TRPV1, RTX was added to the contrast solutions. At pH levels of 6.0 and 6.9, RTX significantly reduced the severity of pancreatitis.. Contrast solutions with low pH contribute to the development of pancreatitis through a TRPV1-dependent mechanism. It is possible that increasing the pH of contrast solution and/or adding an agent that inhibits primary sensory nerve activation may reduce the risk of post-ERCP pancreatitis. Topics: Animals; Cholangiopancreatography, Endoscopic Retrograde; Contrast Media; Diterpenes; Hydrogen-Ion Concentration; Male; Neurogenic Inflammation; Neurons, Afferent; Pancreas; Pancreatitis; Rats; Rats, Sprague-Dawley; Severity of Illness Index; TRPV Cation Channels | 2008 |
Perineural resiniferatoxin selectively inhibits inflammatory hyperalgesia.
Resiniferatoxin (RTX) is an ultrapotent capsaicin analog that binds to the transient receptor potential channel, vanilloid subfamily member 1 (TRPV1). There is a large body of evidence supporting a role for TRPV1 in noxious-mediated and inflammatory hyperalgesic responses. In this study, we evaluated low, graded, doses of perineural RTX as a method for regional pain control. We hypothesized that this approach can provide long-term, but reversible, blockade of a portion of nociceptive afferent fibers within peripheral nerves when given at a site remote from the neuronal perikarya in the dorsal root ganglia. Following perineural RTX application to the sciatic nerve, we demonstrated a significant inhibition of inflammatory nociception that was dose- and time-dependent. At the same time, treated animals maintained normal proprioceptive sensations and motor control, and other nociceptive responses were largely unaffected. Using a range of mechanical and thermal algesic tests, we found that the most sensitive measure following perineural RTX administration was inhibition of inflammatory hyperalgesia. Recovery studies showed that physiologic sensory function could return as early as two weeks post-RTX treatment, however, immunohistochemical examination of the DRG revealed a partial, but significant reduction in the number of the TRPV1-positive neurons. We propose that this method could represent a beneficial treatment for a range of chronic pain problems, including neuropathic and inflammatory pain not responding to other therapies. Topics: Administration, Cutaneous; Animals; Behavior, Animal; Capsaicin; Diterpenes; Dose-Response Relationship, Drug; Edema; Electric Stimulation; Ganglia, Spinal; Hot Temperature; Hyperalgesia; Inflammation; Male; Neurogenic Inflammation; Peripheral Nerves; Rats; Rats, Sprague-Dawley; Rotarod Performance Test; Sciatic Nerve; Time Factors; TRPV Cation Channels | 2008 |
Inhibitory effect of PACAP-38 on acute neurogenic and non-neurogenic inflammatory processes in the rat.
Inhibitory actions of pituitary adenylate cyclase activating polypeptide (PACAP) have been described on cellular/vascular inflammatory components, but there are few data concerning its role in neurogenic inflammation. In this study we measured PACAP-like immunoreactivity with radioimmunoassay in the rat plasma and showed a two-fold elevation in response to systemic stimulation of capsaicin-sensitive sensory nerves by resiniferatoxin, but not after local excitation of cutaneous afferents. Neurogenic plasma extravasation in the plantar skin induced by intraplantar capsaicin or resiniferatoxin, as well as carrageenan-induced paw edema were significantly diminished by intraperitoneal PACAP-38. In summary, these results demonstrate that PACAP is released from activated capsaicin-sensitive afferents into the systemic circulation. It diminishes acute pure neurogenic and mixed-type inflammatory reactions via inhibiting pro-inflammatory mediator release and/or by acting at post-junctional targets on the vascular endothelium. Topics: Acute Disease; Animals; Capsaicin; Carrageenan; Diterpenes; Edema; Inflammation; Injections, Intraperitoneal; Male; Mass Spectrometry; Neurogenic Inflammation; Pituitary Adenylate Cyclase-Activating Polypeptide; Radioimmunoassay; Rats; Rats, Wistar; TRPV Cation Channels | 2007 |
Selective ablation of nociceptive neurons for elimination of hyperalgesia and neurogenic inflammation.
Neuropathic pain is mediated by nociceptive neurons that selectively express the vanilloid receptor 1 (VR1). Resiniferatoxin (RTX) is an excitotoxic VR1 agonist that causes destruction of VR1-positive neurons. To determine whether RTX can be used to ablate VR1-positive neurons selectively and to eliminate hyperalgesia and neurogenic inflammation without affecting tactile sensation and motor function, the authors infused it unilaterally into the trigeminal ganglia in Rhesus monkeys.. Either RTX (three animals) or vehicle (one animal) was directly infused (20 microl) into the right trigeminal ganglion in Rhesus monkeys. Animals were tested postoperatively at 1, 4, and 7 weeks thereafter for touch and pain perception in the trigeminal distribution (application of saline and capsaicin to the cornea). The number of eye blinks, eye wipes, and duration of squinting were recorded. Neurogenic inflammation was tested using capsaicin cream. Animals were killed 4 (one monkey) and 12 (three monkeys) weeks postinfusion. Histological and immunohistochemical analyses were performed. Throughout the duration of the study, response to high-intensity pain stimulation (capsaicin) was selectively and significantly reduced (p < 0.001, RTX-treated compared with vehicle-treated eye [mean +/- standard deviation]): blinks, 25.7 +/- 4.4 compared with 106.6 +/- 20.8; eye wipes, 1.4 +/- 0.8 compared with 19.3 +/- 2.5; and squinting, 1.4 +/- 0.6 seconds compared with 11.4 +/- 1.6 seconds. Normal response to sensation was maintained. Animals showed no neurological deficit or sign of toxicity. Neurogenic inflammation was blocked on the RTX-treated side. Immunohistochemical analysis of the RTX-treated ganglia showed selective elimination of VR1-positive neurons.. Nociceptive neurons can be selectively ablated by intraganglionic RTX infusion, resulting in the elimination of high-intensity pain perception and neurogenic inflammation while maintaining normal sensation and motor function. Analysis of these findings indicated that intraganglionic RTX infusion may provide a new treatment for pain syndromes such as trigeminal neuralgia as well as others. Topics: Animals; Capsaicin; Diterpenes; Hyperalgesia; Immunohistochemistry; Macaca mulatta; Neurogenic Inflammation; Neurons, Afferent; Nociceptors; Trigeminal Ganglion | 2005 |
CNS induced neurogenic cystitis is associated with bladder mast cell degranulation in the rat.
To determine if bladder mast cell degranulation is involved in the genesis of neurogenic cystitis induced by pseudorabies virus (PRV) invasion of the central nervous system (CNS).. Rats received a total of 4 x 106 plaque forming units (pfu) of PRV-Bartha in the abductor caudalis dorsalis (ACD) muscle. Granulated bladder mast cells per mm2 of bladder tissue and urine histamine content were monitored as the cystitis developed over the next few days. In a subgroup of rats, intravesical resiniferatoxin was used to remove capsaicin-sensitive sensory bladder afferents, while another subgroup was pretreated with a mast cell degranulator.. PRV injection into the ACD muscle leads to neurogenic cystitis. Histamine levels were elevated in the urine of virus injected rats before any behavioral or microscopical signs of cystitis were present. When the cystitis became clinically manifest, urine histamine returned to control levels, and the number of granulated mast cells dropped significantly. Rats in which capsaicin-sensitive afferents had been removed did not show any signs of cystitis, or increase in urine histamine, or change in the number of granulated mast cells. Pretreatment of animals with a mast cell degranulator completely prevented the appearance of cystitis without altering the CNS disease.. These results provide further evidence that mast cells are involved in neurogenic cystitis induced by changes in CNS activity. Topics: Administration, Intravesical; Analysis of Variance; Animals; Capsaicin; Cell Degranulation; Central Nervous System Viral Diseases; Cystitis; Denervation; Disease Models, Animal; Diterpenes; Histamine; Male; Mast Cells; Neurogenic Inflammation; Neurons, Afferent; Neurotoxins; Pseudorabies; Rats; Rats, Sprague-Dawley; Urinary Bladder | 2000 |