resiniferatoxin and Arrhythmias--Cardiac

resiniferatoxin has been researched along with Arrhythmias--Cardiac* in 2 studies

Trials

1 trial(s) available for resiniferatoxin and Arrhythmias--Cardiac

ArticleYear
Selective chemical ablation of transient receptor potential vanilloid 1 expressing neurons in the left stellate ganglion protects against ischemia-induced ventricular arrhythmias in dogs.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2019, Volume: 120

    Findings from prior investigations show that left stellate ganglion (LSG) inhibitory approaches protect the heart from ventricular arrhythmias (VAs) caused by acute myocardial infarction (AMI), which still remain many side effects. Targeted transient receptor potential vanilloid 1/tyrosine hydroxylase (TRPV-1/TH) expressing sympathetic neurons ablation is a novel neuro-ablative strategy. The aim of this investigation was to explore if targeted molecular neuro-ablative strategy by resiniferatoxin (RTX) stellate microinjection could protect against ischemia-induced VAs.. Twenty-four anesthetized beagles were assigned to a control group (n = 12) and RTX group (n = 12) in a random manner. Targeted molecular neuro-ablative was produced by RTX stellate microinjection and DMSO was microinjected into LSG in the same way as control. Plasma norepinephrine (NE) level, heart rate variability (HRV), Tpeak-Tend interval (Tp-Te), LSG neural activity and function, ventricular effective refractory period (ERP), beat-to-beat variability of repolarization (BVR) and ventricular action potential duration (APD) were measured at baseline and 60 min after RTX or DMSO microinjection. AMI model was established by the ligation of left anterior descending coronary artery and 60-minute electrocardiography was continuously recorded for VAs analysis. Subsequently, HRV, Tp-Te, plasma NE level from jugular vein and coronary sinus, LSG neural activity and function, ventricular ERP, ventricular APD, BVR, action potential duration alternans (APDA) cycle length and ventricular fibrillation threshold (VFT) were evaluated after AMI. Finally, tissue collection of LSG was performed for examining the TRPV-1, nerve growth factor (NGF) protein and c-fos protein.. TRPV-1 was highly expressed in the TH-expressing neurons and RTX injection significantly ablated TRPV-1/TH-positive neurons in LSG. Compared with baseline, RTX stellate microinjection significantly reduced plasma NE level, the sympathetic component of HRV, LSG neural activity and LSG function, shortened Tp-Te, prolonged ventricular ERP and APD, but there were no remarkable differences existed for control group. AMI resulted in the significant raise in plasma NE level from jugular vein and coronary sinus, the sympathetic component of HRV, LSG neural activity and LSG function, the marked prolongation in Tp-Te and BVR, the significant decrease in ERP and APD from ischemia area, and the increase in APDA cycle length in the ischemic region of the control group, which were remarkably attenuated in the RTX group. RTX pretreatment markedly rose the VFT in the RTX group. Furthermore, the AMI-triggered VAs was significantly prevented by RTX injection in the RTX group. RTX microinjection down-regulated significantly TRPV-1, NGF and c-fos expression in the LSG compared with the control group.. Targeted ablation of TRPV-1/TH positive sympathetic neurons induced by RTX stellate microinjection could suppress ischemia-induced cardiac autonomic imbalances and cardiac electrophysiology instability to protect against AMI-induced VAs.

    Topics: Ablation Techniques; Animals; Arrhythmias, Cardiac; Diterpenes; Dogs; Gene Expression Regulation; Myocardial Ischemia; Neurons; Stellate Ganglion; TRPV Cation Channels; Tyrosine 3-Monooxygenase; Ventricular Fibrillation

2019

Other Studies

1 other study(ies) available for resiniferatoxin and Arrhythmias--Cardiac

ArticleYear
Resiniferatoxin reduces ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord in rats.
    European journal of pharmacology, 2020, Jan-15, Volume: 867

    Excessive sympathetic activity is associated with heart failure and ventricular arrhythmias, which regulated by enhanced cardiac sympathetic afferent reflex, which can be blunted by resiniferatoxin, a selective receptor agonist of transient vanilloid potential 1 (TRPV1) + primary sensory afferents. The present study is aimed to determine whether intrathecal resiniferatoxin application affect cardiac sympathetic tone and electrophysiology, furtherly create a new effective strategy to prevent lethal arrhythmias in chronic heart failure. Four weeks after coronary artery occlusion to induce heart failure in rats, RTX (2μg/10 μl) or vehicle was injected intrathecally into the T2/T3 interspace. Cardiac sympathetic nerve activities (CSNA) and cardiac electrophysiology were evaluated two weeks later. Intrathecal resiniferatoxin significantly and selectively abolished the afferent markers expression (TRPV1 and calcitonin gene-related peptide) in dorsal horn and reduced overactivated CSNA. Electrophysiological studies revealed that resiniferatoxin administration intrathecally significantly reversed the prolongation of action potential duration (APD) and APD alternan, reduced the inducibilities of ventricular arrhythmias. Moreover, the over-activated calcium handling related protein CaMKII and RyR2 in heart failure was reversed by resiniferatoxin administration. In conclusion, these results firstly demonstrate that central chemo-ablation of the TRPV1+ afferents in spinal cord prevent heart from ventricular arrhythmias in heart failure via selectively blunting cardiac sympathetic afferent projection into spinal cord, which suggest a novel promising therapeutic method for anti-arrhythmia in heart failure.

    Topics: Action Potentials; Animals; Arrhythmias, Cardiac; Autonomic Nerve Block; Calcitonin Gene-Related Peptide; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Disease Models, Animal; Diterpenes; Ganglia, Sympathetic; Heart; Heart Failure; Heart Rate; Humans; Injections, Spinal; Male; Neurons, Afferent; Rats; Ryanodine Receptor Calcium Release Channel; Spinal Cord Dorsal Horn; TRPV Cation Channels

2020