recombinant-soluble-cd4 has been researched along with HIV-Infections* in 6 studies
6 other study(ies) available for recombinant-soluble-cd4 and HIV-Infections
Article | Year |
---|---|
Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape.
A comprehensive understanding of the regions on HIV-1 envelope trimers targeted by broadly neutralizing antibodies may contribute to rational design of an HIV-1 vaccine. We previously identified a participant in the CAPRISA cohort, CAP248, who developed trimer-specific antibodies capable of neutralizing 60% of heterologous viruses at three years post-infection. Here, we report the isolation by B cell culture of monoclonal antibody CAP248-2B, which targets a novel membrane proximal epitope including elements of gp120 and gp41. Despite low maximum inhibition plateaus, often below 50% inhibitory concentrations, the breadth of CAP248-2B significantly correlated with donor plasma. Site-directed mutagenesis, X-ray crystallography, and negative-stain electron microscopy 3D reconstructions revealed how CAP248-2B recognizes a cleavage-dependent epitope that includes the gp120 C terminus. While this epitope is distinct, it overlapped in parts of gp41 with the epitopes of broadly neutralizing antibodies PGT151, VRC34, 35O22, 3BC315, and 10E8. CAP248-2B has a conformationally variable paratope with an unusually long 19 amino acid light chain third complementarity determining region. Two phenylalanines at the loop apex were predicted by docking and mutagenesis data to interact with the viral membrane. Neutralization by CAP248-2B is not dependent on any single glycan proximal to its epitope, and low neutralization plateaus could not be completely explained by N- or O-linked glycosylation pathway inhibitors, furin co-transfection, or pre-incubation with soluble CD4. Viral escape from CAP248-2B involved a cluster of rare mutations in the gp120-gp41 cleavage sites. Simultaneous introduction of these mutations into heterologous viruses abrogated neutralization by CAP248-2B, but enhanced neutralization sensitivity to 35O22, 4E10, and 10E8 by 10-100-fold. Altogether, this study expands the region of the HIV-1 gp120-gp41 quaternary interface that is a target for broadly neutralizing antibodies and identifies a set of mutations in the gp120 C terminus that exposes the membrane-proximal external region of gp41, with potential utility in HIV vaccine design. Topics: Antibodies, Monoclonal; Antibodies, Neutralizing; Binding Sites, Antibody; CD4 Antigens; Cell Line, Tumor; Complementarity Determining Regions; Crystallography, X-Ray; Epitopes; Glycosylation; HeLa Cells; HIV Antibodies; HIV Antigens; HIV Envelope Protein gp120; HIV Envelope Protein gp41; HIV Infections; HIV-1; Humans; Immune Evasion; Neutralization Tests; Recombinant Proteins | 2017 |
V1/V2 Neutralizing Epitope is Conserved in Divergent Non-M Groups of HIV-1.
Highly potent broadly neutralizing monoclonal antibodies (bNAbs) have been obtained from individuals infected by HIV-1 group M variants. We analyzed the cross-group neutralization potency of these bNAbs toward non-M primary isolates (PI).. The sensitivity to neutralization was analyzed in a neutralization assay using TZM-bl cells. Twenty-three bNAbs were used, including reagents targeting the CD4-binding site, the N160 glycan-V1/V2 site, the N332 glycan-V3 site, the membrane proximal external region of gp41, and complex epitopes spanning both env subunits. Two bispecific antibodies that combine the inhibitory activity of an anti-CD4 with that of PG9 or PG16 bNAbs were included in the study (PG9-iMab and PG16-iMab).. Cross-group neutralization was observed only with the bNAbs targeting the N160 glycan-V1/V2 site. Four group O PIs, 1 group N PI, and the group P PI were neutralized by PG9 and/or PG16 or PGT145 at low concentrations (0.04-9.39 μg/mL). None of the non-M PIs was neutralized by the bNAbs targeting other regions at the highest concentration tested, except 10E8 that neutralized weakly 2 group N PIs and 35O22 that neutralized 1 group O PI. The bispecific bNAbs neutralized very efficiently all the non-M PIs with IC50 below 1 μg/mL, except 2 group O strains.. The N160 glycan-V1/V2 site is the most conserved neutralizing site within the 4 groups of HIV-1. This makes it an interesting target for the development of HIV vaccine immunogens. The corresponding bNAbs may be useful for immunotherapeutic strategies in patients infected by non-M variants. Topics: Amino Acid Sequence; Antibodies, Monoclonal; Antibodies, Neutralizing; CD4 Antigens; CD4 Lymphocyte Count; Chlorofluorocarbons, Methane; Conserved Sequence; env Gene Products, Human Immunodeficiency Virus; Epitopes; Gene Expression Regulation, Viral; HIV Antibodies; HIV Envelope Protein gp120; HIV Infections; HIV-1; Humans; Molecular Sequence Data; Phylogeny; Recombinant Proteins | 2016 |
Phenotypic Correlates of HIV-1 Macrophage Tropism.
HIV-1 is typically CCR5 using (R5) and T cell tropic (T-tropic), targeting memory CD4(+) T cells throughout acute and chronic infections. However, viruses can expand into alternative cells types. Macrophage-tropic (M-tropic) HIV-1 variants have evolved to infect macrophages, which have only low levels of surface CD4. Most M-tropic variants have been isolated from the central nervous system during late-stage chronic infection. We used the HIV-1 env genes of well-defined, subject-matched M-tropic and T-tropic viruses to characterize the phenotypic features of the M-tropic Env protein. We found that, compared to T-tropic viruses, M-tropic viruses infect monocyte-derived macrophages (MDMs) on average 28-fold more efficiently, use low-density CD4 more efficiently, have increased sensitivity to soluble CD4 (sCD4), and show trends toward sensitivity to some CD4 binding site antibodies but no difference in sensitivity to antibodies targeting the CD4-bound conformation. M-tropic viruses also displayed a trend toward resistance to neutralization by monoclonal antibodies targeting the V1/V2 region of Env, suggesting subtle changes in Env protein conformation. The paired M- and T-tropic viruses did not differ in autologous serum neutralization, temperature sensitivity, entry kinetics, intrinsic infectivity, or Env protein incorporation. We also examined viruses with modestly increased CD4 usage. These variants have significant sensitivity to sCD4 and may represent evolutionary intermediates. CD4 usage is strongly correlated with infectivity of MDMs over a wide range of CD4 entry phenotypes. These data suggest that emergence of M-tropic HIV-1 includes multiple steps in which a phenotype of increased sensitivity to sCD4 and enhanced CD4 usage accompany subtle changes in Env conformation.. HIV-1 typically replicates in CD4(+) T cells. However, HIV-1 can evolve to infect macrophages, especially within the brain. Understanding how CCR5-using macrophage-tropic viruses evolve and differ from CCR5-using T cell-tropic viruses may provide insights into viral evolution and pathogenesis within the central nervous system. We characterized the HIV-1 env viral entry gene from subject-matched macrophage-tropic and T cell-tropic viruses to identify entry features of macrophage-tropic viruses. We observed several differences between T cell-tropic and macrophage-tropic Env proteins, including functional differences with host CD4 receptor engagement and possible changes in the CD4 binding site and V1/V2 region. We also identified viruses with phenotypes between that of "true" macrophage-tropic and T cell-tropic viruses, which may represent evolutionary intermediates in a multistep process to macrophage tropism. Topics: Antibodies, Monoclonal; Antibodies, Neutralizing; Antibodies, Viral; CD4 Antigens; CD4-Positive T-Lymphocytes; Cell Line, Tumor; HEK293 Cells; HIV Envelope Protein gp120; HIV Envelope Protein gp160; HIV Envelope Protein gp41; HIV Infections; HIV-1; Humans; Macrophages; Receptors, CCR5; Recombinant Proteins; Viral Tropism; Virus Internalization | 2015 |
Binding of HIV-1 gp120 glycoprotein to silica nanoparticles modified with CD4 glycoprotein and CD4 peptide fragments.
An important step in human immunodeficiency virus infection involves the interaction between the viral envelope glycoprotein gp120 and the human host cell surface receptor CD4. Herein, we describe a CD4-functionalized mesoporous silica-based system to selectively capture HIV-gp120 with high binding efficiency. Using a protection-deprotection strategy developed recently by our group, the external surface of the mesoporous particles was selectively functionalized with soluble CD4 ("sCD4") or an 18-peptide fragment mimicking the gp120 binding region. Confocal microscopy confirmed the CD4 locations and showed that the internal pores can be made accessible after external modification in a controlled manner. An evaluation of the ability of an 18-peptide CD4 fragment versus amide-immobilized sCD4 and sCD4 immobilized through its glycosidic group indicated that while all peptides were selective, the latter method was clearly best, with nearly complete removal of whole gp120 from solution. This study shows, for the first time, that sCD4 bound to mesoporous silica particles actively recognizes and retains high binding affinity for HIV-gp120. It is anticipated that, by proper modification of the accessible internal pores, our methodology can be adopted to develop porous platforms for HIV diagnosis, imaging, drug delivery, and vaccine development. Topics: CD4 Antigens; HIV Envelope Protein gp120; HIV Infections; HIV-1; Humans; Nanoparticles; Peptide Fragments; Protein Binding; Recombinant Proteins; Silicon Dioxide | 2012 |
DNA vaccines expressing soluble CD4-envelope proteins fused to C3d elicit cross-reactive neutralizing antibodies to HIV-1.
DNA vaccines expressing the envelope (Env) of the human immunodeficiency virus type 1 (HIV-1) have been relatively ineffective at generating high-titer, long-lasting, neutralizing antibodies in a variety of animal models. In this study, DNA vaccines were constructed to express a fusion protein of the soluble human CD4 (sCD4) and the gp120 subunit of the HIV-1 envelope. To enhance the immunogenicity of the expressed fusion protein, three copies of the murine C3d (mC3d3) were added to the carboxyl terminus of the complex. Monoclonal antibodies that recognize CD4-induced epitopes on gp120 efficiently bound to sCD4-gp120 or sCD4-gp120-mC3d3. In addition, both sCD4-gp120 and sCD4-gp120-mC3d3 bound to cells expressing appropriate coreceptors in the absence of cell surface hCD4. Mice (BALB/c) vaccinated with DNA vaccines expressing either gp120-mC3d3 or sCD4-gp120-mC3d3 elicited antibodies that neutralized homologous virus infection. However, the use of sCD4-gp120-mC3d3-DNA elicited the highest titers of neutralizing antibodies that persisted after depletion of anti-hCD4 antibodies. Interestingly, only mice vaccinated with DNA expressing sCD4-gp120-mC3d3 had antibodies that elicited cross-protective neutralizing antibodies. The fusion of sCD4 to the HIV-1 envelope exposes neutralizing epitopes that elicit broad protective immunity when the fusion complex is coupled with the molecular adjuvant, C3d. Topics: AIDS Vaccines; Animals; CD4 Antigens; Complement C3d; HIV Antibodies; HIV Envelope Protein gp120; HIV Infections; HIV-1; Immunization; Injections, Intradermal; Mice; Mice, Inbred BALB C; Plasmids; Recombinant Fusion Proteins; Recombinant Proteins; Vaccines, DNA | 2004 |
Increased adhesion as a mechanism of antibody-dependent and antibody-independent complement-mediated enhancement of human immunodeficiency virus infection.
Enhancement of human immunodeficiency virus (HIV) infection by complement alone or in conjunction with antibodies was studied experimentally and theoretically. Experimental studies showed that while HIV-positive sera neutralize HIV infection, the addition of fresh complement abrogated neutralization and could even cause enhancement. Enhancement was blocked by anti-complement receptor 2 antibodies, and infection under enhancing conditions could be blocked by soluble CD4. Antibody-dependent complement-mediated enhancement (C'ADE) was dependent on the alternative complement activation pathway, as factor B-deficient serum could enhance only after the addition of factor B. The observed enhancement was also antibody dependent, since the addition of antibodies increased the level of enhancement. Under C'ADE conditions, infection reached a plateau within 5 min and was not caused by activation of cells by factors in the human serum. On the contrary, preincubation of cells with complement decreased the level of enhancement. A theoretical model of HIV infection in vitro which exhibited similar enhancement in an antibody- and complement concentration-dependent way was developed. Model studies indicated that the enhanced infection process could be explained by the fact that virions, because of complement deposition on the surface, bind more efficiently to cells. The model also indicated that the saturation of the enhanced infection process seen after a few minutes could be caused by saturation of the complement receptors. The effect of neutralizing antibodies can thus be overcome by the enhancing effect of complement that facilitates the contact between gp120 and CD4. These studies demonstrate that the main features of the complement-dependent enhancement phenomenon can be understood in terms of a simple mathematical model. Topics: CD4 Antigens; Cell Line; Complement System Proteins; Dose-Response Relationship, Immunologic; HIV Antibodies; HIV Infections; HIV-1; Hot Temperature; Humans; Neutralization Tests; Receptors, Complement; Recombinant Proteins | 1995 |