rebaudioside-a and Hyperglycemia

rebaudioside-a has been researched along with Hyperglycemia* in 7 studies

Other Studies

7 other study(ies) available for rebaudioside-a and Hyperglycemia

ArticleYear
Intra-gastrically administration of Stevia and particularly Nano-Stevia reversed the hyperglycemia, anxiety, and memory impairment in streptozotocin-induced diabetic rats.
    Physiology & behavior, 2023, 05-01, Volume: 263

    Type II diabetes mellitus is a group of metabolic disorders considered chronic hyperglycemia resulting from deficits in insulin secretion or insulin function. This disease usually links with various psychological problems such as anxiety and cognitive dysfunctions. Stevia (Stevia rebaudiana Bertoni) is a natural and healthy substitute sweetener for sugar and artificial sweeteners. It has become essential for human diets and food manufacturers. The aim of this research was to investigate the effects of Stevia and Nano-stevia on the regulation of anxiety and memory processes in male diabetic rats. The elevated plus-maze (EPM) test-retest procedure was used to assess anxiety and memory in male diabetic rats. The findings exhibited that induction of diabetes caused a distorted cellular arrangement in the liver tissue of male rats. On the other hand, intra-gastrically administration of Stevia (1 ml/kg) and nano-Stevia (1 ml/kg) indicated a normal appearance in the liver tissue of male diabetic rats. Moreover, induction of diabetes caused the augmentation of blood glucose, reduction in time spent in%open-arm time (%OAT) on the test day, and enhancement of%OAT on the retest day. Therefore, induction of diabetes in rats produced hyperglycemia, anxiogenic effect, and memory impairment and these responses were reversed by drug treatment. Furthermore, intra-gastrically application of Stevia (1 ml/kg) and nano-Stevia (1 ml/kg) reversed the hyperglycemia, anxiogenic effect, and memory impairment in male diabetic rats. Interestingly, Nano-Stevia exhibited the highest significant response rather than Stevia. In conclusion, the results of this research suggested the beneficial properties of Stevia and particularly Nano-Stevia on inducing anti-diabetic effects, anxiolytic behavior, as well as memory improvement in male diabetic rats.

    Topics: Animals; Anxiety; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Humans; Hyperglycemia; Male; Memory Disorders; Plant Extracts; Rats; Stevia; Streptozocin; Sweetening Agents

2023
Stevia (Stevia rebaudiana) extract ameliorates insulin resistance by regulating mitochondrial function and oxidative stress in the skeletal muscle of db/db mice.
    BMC complementary medicine and therapies, 2023, Jul-24, Volume: 23, Issue:1

    Type 2 diabetes mellitus (T2DM), a growing health problem worldwide, is a metabolic disorder characterized by hyperglycemia due to insulin resistance and defective insulin secretion by pancreatic β-cells. The skeletal muscle is a central organ that consumes most of the insulin-stimulated glucose in the body, and insulin resistance can damage muscles in T2DM. Based on a strong correlation between diabetes and muscles, we investigated the effects of stevia extract (SE) and stevioside (SV) on the skeletal muscle of diabetic db/db mice.. The mice were administered saline, metformin  (200 mg/kg/day), SE (200 and 500 mg/kg/day), and SV (40 mg/kg/day) for 35 days. During administration, we checked the levels of fasting blood glucose twice a week and conducted the oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). After administration, we analyzed serum biochemical parameters, triglyceride (TG), total cholesterol (TC), insulin and antioxidant enzymes, and the cross-sectional area of skeletal muscle fibers of db/db mice. Western blots were conducted using the skeletal muscle of mice to examine the effect of SE and SV on protein expression of insulin signaling, mitochondrial function, and oxidative stress.. SE and SV administration lowered the levels of fasting blood glucose, OGTT, and ITT in db/db mice. The administration also decreased serum levels of TG, TC, and insulin while increasing those of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Interestingly, muscle fiber size was significantly increased in db/db mice treated with SE500 and SV. In the skeletal muscle of db/db mice, SE and SV administration activated insulin signaling by increasing the protein expression of insulin receptor substrate, Akt, and glucose transporter type 4. Furthermore, SE500 administration markedly increased the protein expression of AMP-activated protein kinase-α, sirtuin-1, and peroxisome proliferator-activated receptor-γ coactivator-1α. SV administration significantly reduced oxidative stress by down-regulating the protein expression of 4-hydroxynonenal, heme oxygenase-1, SOD, and GPx. In addition, SE500 and SV administration suppressed the expression of apoptosis-related proteins in the skeletal muscle of db/db mice.. SE and SV administration attenuated hyperglycemia in diabetic mice. Moreover, the administration ameliorated insulin resistance by regulating mitochondrial function and oxidative stress, increasing muscle fiber size. Overall, this study suggests that SE and SV administration may serve as a potential strategy for the treatment of diabetic muscles.

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Glutathione Peroxidase; Hyperglycemia; Insulin; Insulin Resistance; Mice; Mitochondria; Muscle, Skeletal; Oxidative Stress; Stevia; Superoxide Dismutase

2023
Steviol glycosides from Stevia rebaudiana Bertoni mitigate lipid metabolism abnormalities in diabetes by modulating selected gene expression - An in vivo study.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2023, Volume: 166

    In diabetes, in parallel to hyperglycaemia, elevated serum lipids are also diagnosed, representing a high-risk factor for coronary heart disease and cardiovascular complications. The objective of this study was to unravel the mechanisms that underlie the potential of steviol glycosides (stevioside or rebaudioside A) administered at two doses (500 or 2500 mg/kg body weight for 5 weeks) to regulate lipid metabolism. In this paper, the expression of selected genes responsible for glucose and lipid metabolism (Glut4, Pparγ, Cebpa, Fasn, Lpl and Egr1) in the peripheral tissues (adipose, liver and muscle tissue) was determined using quantitative real-time PCR method. It was found that the supplementation of steviol glycosides affected the expression of Glut4, Cebpa and Fasn genes, depending on the type of the glycoside and its dose, as well as the type of tissue, whish in part may explain the lipid-regulatory potential of steviol glycosides in hyperglycaemic conditions. Nevertheless, more in-depth studies, including human trials, are needed to confirm these effects, before steviol glycosides can be used in the therapy of type 2 diabetes.

    Topics: Diabetes Mellitus, Type 2; Gene Expression; Glycosides; Humans; Hyperglycemia; Lipid Metabolism; Stevia

2023
GlucoMedix®, an extract of Stevia rebaudiana and Uncaria tomentosa, reduces hyperglycemia, hyperlipidemia, and hypertension in rat models without toxicity: a treatment for metabolic syndrome.
    BMC complementary medicine and therapies, 2022, Mar-08, Volume: 22, Issue:1

    The objective of this in vivo study is to evaluate in five rat models the pharmacologic effects and toxicity of a commercial hydro-alcoholic extract, GlucoMedix®, derived from Stevia rebaudiana and the pentacyclic chemotype of Uncaria Tomentosa (Willd.) DC, for use as a treatment for metabolic syndrome. The extract contains phytochemicals of Stevia (e.g., steviol glycosides) and Uncaria (e.g., pentacyclic oxindole alkaloids, but lacks tetracyclic oxindole alkaloids).. The pharmacologic assessments in three rat models include reductions in chemically induced hyperglycemia, hyperlipidemia (cholesterol and triglycerides), and hypertension, all of which are comorbidities of metabolic syndrome. Acute toxicity and 28-day subacute toxicity were assessed in rat models at doses higher than those used in the efficacy models.. The five in vivo rat models revealed that the all-natural phytotherapy GlucoMedix® is a safe and effective treatment for hyperglycemia, hyperlipidemia, and hypertension. This extract is expected to affect multiple comorbidities of metabolic syndrome, without any acute or subacute oral toxicity in humans. Although multiple prescription drugs are well known for the treatment of individual comorbidities of metabolic syndrome, no drug monotherapy concurrently treats all three comorbidities.

    Topics: Animals; Cat's Claw; Hyperglycemia; Hyperlipidemias; Hypertension; Metabolic Syndrome; Plant Extracts; Rats; Stevia

2022
[Antihypertensive, antihyperglycemic, and antioxidant effects of Stevia rebaudiana Bertoni (creole variety INIFAP C01) extracts on Wistar rats with induced metabolic syndrome].
    Nutricion hospitalaria, 2020, Aug-27, Volume: 37, Issue:4

    Introduction: medicinal plants have demonstrated therapeutic applications for treating different diseases, including chronic and degenerative diseases associated with metabolic syndrome. Objectives: to assess the weight control and the antihypertensive, antihyperglycemic and antioxidant effects of aqueous and ethanolic extracts of Stevia rebaudiana (creole variety INIFAP C01) leaves and stems cultivated in the Muna and Mocochá municipalities (Yucatán, México). Methods: aqueous and ethanolic extracts of leaves (HAMU and HEMU, respectively) and stems (TAMU and TEMU, respectively) from Muna, and aqueous and ethanolic extracts of leaves (HAMO and HEMO, respectively) and stems (TAMO and TEMO, respectively) from Mocochá were orally administered to Wistar male rats induced to metabolic syndrome. Weight, blood pressure, blood sugar levels, malondialdehyde (MDA) levels, and superoxide dismutase (SOD) levels in blood plasma were measured. Results: TAMU and HAMO samples reduced weight by 1.91 % and 1.57 %, respectively. On the other hand, HEMU and HAMU samples reduced systolic (PAS) and diastolic (PAD) blood pressure levels by 29.31-30.47 % and 36.69-36.98 %. In the glucose tolerance test (GTT) HEMU showed a reduction in blood sugar levels of 10.94 % on the first day, and of 14.83 % on day 30. TEMO and TAMO samples showed lower malondialdehyde (MDA) concentrations of 7.0 and 7.3 µM, respectively. HEMU and TEMU showed a higher superoxide dismutase (SOD) concentration of 1.29 and 1.12 U/mL, respectively. Conclusions: extracts of S. rebaudiana can help to control weight gain, to decrease blood pressure and the incidence of diabetes, and to reduce oxidative damage.. Introducción: las plantas medicinales han mostrado tener aplicaciones terapéuticas en el tratamiento de diferentes enfermedades, entre ellas las enfermedades crónicas degenerativas presentes en el síndrome metabólico (SM). Objetivos: evaluar el efecto en el control del peso, así como el efecto antihipertensivo, antihiperglucémico y antioxidante, de extractos acuosos y etanólicos de hojas y tallos de Stevia rebaudiana, variedad criolla INIFAP C01, producidas en los municipios de Muna y Mocochá (Yucatán, México). Métodos: se administraron por vía oral extractos acuosos y etanólicos de hojas (HAMU y HEMU, respectivamente) y tallos procedentes de Muna (TAMU y TEMU, respectivamente), así como extractos acuosos y etanólicos de hojas (HAMO y HEMO, respectivamente) y tallos de Mocochá (TAMO y TEMO, respectivamente), a ratas Wistar macho en las que se indujo un SM. Se registraron los pesos y se midieron los niveles de presión arterial (PA) y glucosa en sangre, así como los niveles de malondialdehído (MDA) y superóxido-dismutasa (SOD) en plasma sanguíneo. Resultados: TAMU y HAMO mostraron porcentajes de reducción del peso del 1,91 % y 1,57 %, respectivamente. HEMU y HAMU mostraron porcentajes de reducción de la presión arterial sistólica (PAS) y diastólica (PAD) del 30,47-29,31 % y 36,98-36,69 %, respectivamente. En el test de tolerancia oral a la glucosa (TTOG), HEMU mostró porcentajes de reducción de la glucosa sanguínea del 10,94 % en el día uno y del 14,83 % en el día 30. TEMO y TAMO mostraron una menor concentración de MDA, de 7,0 y 7,3 µM, respectivamente, y HEMU y TEMU mostraron una mayor concentración de SOD, de 1,29 y 1,12 U/mL, respectivamente. Conclusiones: los extractos de S. rebaudiana pueden ayudar a controlar el aumento de peso, disminuir las cifras de presión arterial y la incidencia de diabetes, y reducir el daño oxidativo.

    Topics: Animals; Antioxidants; Hyperglycemia; Hypertension; Male; Metabolic Syndrome; Phytotherapy; Plant Extracts; Rats; Rats, Wistar; Stevia

2020
Insight into anti-diabetic effect of low dose of stevioside.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 90

    Diabetes mellitus is a chronic disease characterized by abnormal carbohydrate, lipid and protein metabolism due to a lack of insulin or reduced target cell sensitivity to insulin. Stevia rebaudiana is an important source of biochemically active substances with proven anti-diabetic effect. The aim of this study was to determine anti-diabetic effects of the low dose of stevioside in NMRI Haan mice. Aqueous stevioside solution (20mg/kg body weight) was administered by oral route of administration. Anti-diabetic effect of stevioside was estimated by oral glucose tolerance test, adrenaline test after a 10day stevioside treatment, and alloxan induced hyperglycaemia in mice (two experimental groups, 10day stevioside treatment before and after alloxan administration). Aqueous stevioside solution prevented significant increase in glycaemia in oral glucose tolerance test (9.22±1.13 to 9.85±1.32mmol/l, P<0.05), and not in adrenaline test. Significant difference in glycaemia was detected in mice pre-treated with saline and stevioside in alloxan induced hyperglycaemia (saline 23.32±2.14, stevioside 14.70±4.95mmol/l, P<0.05). In mice pre-treated with stevioside, smallest β cells loss was found compared to other alloxan treated groups. Preserved normal cytoarchitectonic arrangement in islets was detected. Based on the given results we presume there exist a potential therapeutic use of low dose stevioside in diabetes.

    Topics: Alloxan; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diterpenes, Kaurane; Glucose Tolerance Test; Glucosides; Hyperglycemia; Hypoglycemic Agents; Insulin; Male; Mice; Phytotherapy; Plant Extracts; Stevia

2017
Antihyperglycemic and Antihyperlipidemic Activity of Hydroponic
    BioMed research international, 2017, Volume: 2017

    Diabetes mellitus (DM) is a serious worldwide problem related to human hyperglycemia. Thus, herbal preparations with antihyperglycemic properties especially leaf extracts of hydroponic

    Topics: Animals; Antihypertensive Agents; Female; Hyperglycemia; Hypolipidemic Agents; Immobilization; Male; Plant Extracts; Rabbits; Stevia; Stress, Psychological

2017