rb-150 and Disease-Models--Animal

rb-150 has been researched along with Disease-Models--Animal* in 7 studies

Other Studies

7 other study(ies) available for rb-150 and Disease-Models--Animal

ArticleYear
Brain ACE2 activation following brain aminopeptidase A blockade by firibastat in salt-dependent hypertension.
    Clinical science (London, England : 1979), 2021, 03-26, Volume: 135, Issue:6

    In the brain, aminopeptidase A (APA), a membrane-bound zinc metalloprotease, generates angiotensin III from angiotensin II. Brain angiotensin III exerts a tonic stimulatory effect on the control of blood pressure (BP) in hypertensive rats and increases vasopressin release. Blocking brain angiotensin III formation by the APA inhibitor prodrug RB150/firibastat normalizes arterial BP in hypertensive deoxycorticosterone acetate (DOCA)-salt rats without inducing angiotensin II accumulation. We therefore hypothesized that another metabolic pathway of brain angiotensin II, such as the conversion of angiotensin II into angiotensin 1-7 (Ang 1-7) by angiotensin-converting enzyme 2 (ACE2) might be activated following brain APA inhibition. We found that the intracerebroventricular (icv) administration of RB150/firibastat in conscious DOCA-salt rats both inhibited brain APA activity and induced an increase in brain ACE2 activity. Then, we showed that the decreases in BP and vasopressin release resulting from brain APA inhibition with RB150/firibastat were reduced if ACE2 was concomitantly inhibited by MLN4760, a potent ACE2 inhibitor, or if the Mas receptor (MasR) was blocked by A779, a MasR antagonist. Our findings suggest that in the brain, the increase in ACE2 activity resulting from APA inhibition by RB150/firibastat treatment, subsequently increasing Ang 1-7 and activating the MasR while blocking angiotensin III formation, contributes to the antihypertensive effect and the decrease in vasopressin release induced by RB150/firibastat. RB150/firibastat treatment constitutes an interesting therapeutic approach to improve BP control in hypertensive patients by inducing in the brain renin-angiotensin system, hyperactivity of the beneficial ACE2/Ang 1-7/MasR axis while decreasing that of the deleterious APA/Ang II/Ang III/ATI receptor axis.

    Topics: Angiotensin III; Angiotensin-Converting Enzyme 2; Animals; Antihypertensive Agents; Brain; Desoxycorticosterone Acetate; Disease Models, Animal; Disulfides; Glutamyl Aminopeptidase; Hypertension; Male; Mice; Rats, Wistar; Sodium Chloride, Dietary; Sulfonic Acids

2021
Effects of firibastat in combination with enalapril and hydrochlorothiazide on blood pressure and vasopressin release in hypertensive DOCA-salt rats.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, Volume: 140

    In the brain, aminopeptidase A (APA) generates angiotensin III, one of the effector peptides of the brain renin-angiotensin system (RAS), exerting tonic stimulatory control over blood pressure (BP) in hypertensive rats. Oral administration of firibastat, an APA inhibitor prodrug, in hypertensive rats, inhibits brain APA activity, blocks brain angiotensin III formation and decreases BP. In this study, we evaluated the efficacy of firibastat in combination with enalapril, an angiotensin I-converting enzyme inhibitor, and hydrochlorothiazide (HCTZ), in conscious hypertensive deoxycorticosterone acetate (DOCA)-salt rats, which display high plasma arginine-vasopressin levels, low circulating renin levels and resistance to treatment by systemic RAS blockers. We determined mean arterial BP, heart rate, plasma arginine-vasopressin levels and renin activity in DOCA-salt rats orally treated with firibastat, enalapril or HCTZ administered alone or in combination. Acute oral firibastat administration (30 mg/kg) induced a significant decrease in BP, whereas enalapril (10 mg/kg) or HCTZ (10 mg/kg) administered alone induced no significant change in BP in conscious DOCA-salt rats. The BP decrease induced by acute and nine-day chronic tritherapy [Firibastat+Enalapril+HCTZ] was significantly greater than that observed after bitherapy [Enalapril+HCTZ]. Interestingly, the chronic administration of a combination of firibastat with [Enalapril+HCTZ] reduced plasma arginine-vasopressin levels by 62% relative to those measured in DOCA-salt rats receiving bitherapy. Our data show that tritherapy with firibastat, enalapril and HCTZ improves BP control and arginine-vasopressin release in an experimental salt-dependent model of hypertension, paving the way for the development of new treatments for patients with currently difficult-to-treat or resistant hypertension.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Desoxycorticosterone Acetate; Disease Models, Animal; Disulfides; Enalapril; Glutamyl Aminopeptidase; Hydrochlorothiazide; Hypertension; Male; Rats; Rats, Inbred WKY; Renin-Angiotensin System; Sulfonic Acids; Vasopressins

2021
Specific Inhibition of Brain Angiotensin III Formation as a New Strategy for Prevention of Heart Failure After Myocardial Infarction.
    Journal of cardiovascular pharmacology, 2019, Volume: 73, Issue:2

    Inhibition of brain angiotensin III by central infusion of aminopeptidase A (APA) inhibitor firibastat (RB150) inhibits sympathetic hyperactivity and heart failure in rats after myocardial infarction (MI). This study evaluated effectiveness of systemic treatment with firibastat compared with AT1R blocker, losartan.. MI was induced by ligation of left coronary artery in male Wistar rats. Rats were treated from 1 to 5 weeks after MI in protocol 1 with vehicle, or firibastat at 50 mg/kg/d subcutaneously (s.c.) or 150 mg/kg/d oral, once daily, and in protocol 2, with vehicle, firibastat 150 mg/kg or losartan 50 mg/kg oral twice daily. At 5 weeks, left ventricle function was evaluated by echocardiography and Millar catheter. After MI, rats developed moderate severe heart failure. Both s.c. and oral firibastat inhibited brain APA and attenuated left ventricle dysfunction. Oral firibastat and losartan similarly improved left ventricular end diastolic pressure. However, whereas firibastat improved dP/dtmax, losartan lowered dP/dtmax and left ventricular peak systolic pressure, and increased plasma creatinine by ~50%. On the other hand, losartan more effectively inhibited cardiac fibrosis.. Inhibition of the brain renin-angiotensin system by oral APA inhibitor is at least as effective as oral AT1R blocker to inhibit cardiac dysfunction after MI but without hypotension or renal dysfunction.

    Topics: Administration, Oral; Angiotensin II Type 1 Receptor Blockers; Angiotensin III; Animals; Brain; Disease Models, Animal; Disulfides; Enzyme Inhibitors; Fibrosis; Glutamyl Aminopeptidase; Heart Failure; Injections, Subcutaneous; Losartan; Male; Myocardial Infarction; Rats, Wistar; Signal Transduction; Sulfonic Acids; Ventricular Function, Left; Ventricular Pressure; Ventricular Remodeling

2019
NI956/QGC006, a Potent Orally Active, Brain-Penetrating Aminopeptidase A Inhibitor for Treating Hypertension.
    Hypertension (Dallas, Tex. : 1979), 2019, Volume: 73, Issue:6

    Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We have shown that aminopeptidase A is involved in the formation of brain angiotensin III, which exerts tonic stimulatory control over blood pressure in hypertensive deoxycorticosterone acetate-salt rats and spontaneously hypertensive rats. We have also shown that injection of the specific and selective aminopeptidase A inhibitor, (3S)-3-amino-4-sulfanyl-butane-1-sulfonic acid (EC33), by central route or its prodrug, RB150/firibastat, by oral route inhibited brain aminopeptidase A activity and blocked the formation of brain angiotensin III, normalizing blood pressure in hypertensive rats. These findings identified brain aminopeptidase A as a potential new therapeutic target for hypertension. We report here the development of a new aminopeptidase A inhibitor prodrug, NI956/QGC006, obtained by the disulfide bridge-mediated dimerization of NI929. NI929 is 10× more efficient than EC33 at inhibiting recombinant mouse aminopeptidase A activity in vitro. After oral administration at a dose of 4 mg/kg in conscious deoxycorticosterone acetate-salt rats, NI956/QGC006 normalized brain aminopeptidase A activity and induced a marked decrease in blood pressure of -44±13 mm Hg 4 hours after treatment ( P<0.001), sustained over 10 hours (-21±12 mm Hg; P<0.05). Moreover, NI956/QGC006 decreased plasma arginine-vasopressin levels, and increased diuresis and natriuresis, that may participate to the blood pressure decrease. Finally, NI956/QGC006 did not affect plasma sodium and potassium concentrations. This study shows that NI956/QGC006 is a best-in-class central-acting aminopeptidase A inhibitor prodrug. Our results support the development of hypertension treatments targeting brain aminopeptidase A.

    Topics: Animals; Blood Pressure; Brain; Disease Models, Animal; Disulfides; Glutamyl Aminopeptidase; Hypertension; Male; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Renin-Angiotensin System; Sulfonic Acids

2019
Inhibition of brain angiotensin III attenuates sympathetic hyperactivity and cardiac dysfunction in rats post-myocardial infarction.
    Cardiovascular research, 2013, Mar-01, Volume: 97, Issue:3

    In rats post-myocardial infarction (MI), activation of angiotensinergic pathways in the brain contributes to sympathetic hyperactivity and progressive left ventricle (LV) dysfunction. The present study examined whether angiotensin III (Ang III) is one of the main effector peptides of the brain renin-angiotensin system controlling these effects.. After coronary artery ligation, Wistar rats were infused intracerebroventricularly for 4 weeks via minipumps with vehicle, the aminopeptidase A (APA) inhibitor RB150 (0.3 mg/day), which blocks the formation of brain Ang III, or losartan (0.25 mg/day). Blood pressure (BP), heart rate, and renal sympathetic nerve activity in response to air stress and acute changes in BP were measured, and LV function was evaluated by echocardiography and Millar catheter. At 4 weeks post-MI, brain APA activity was increased, sympatho-excitatory and pressor responses to air stress enhanced, and arterial baroreflex function impaired. LV end-diastolic pressure (LVEDP) was increased and ejection fraction (EF) and maximal first derivative of change in pressure over time (dP/dt(max)) were decreased. Central infusion of RB150 during 4 weeks post-MI normalized brain APA activity and responses to stress and baroreflex function, and improved LVEDP, EF, and dP/dt(max). Central infusion of losartan had similar effects but was somewhat less effective, and had no effect on brain APA activity.. These results indicate that brain APA and Ang III appear to play a pivotal role in the sympathetic hyperactivity and LV dysfunction in rats post-MI. RB150 may be a potential candidate for central nervous system-targeted therapy post-MI.

    Topics: Aldosterone; Angiotensin III; Animals; Baroreflex; Blood Pressure; Brain; Disease Models, Animal; Disease Progression; Disulfides; Glutamyl Aminopeptidase; Heart Rate; Infusions, Intraventricular; Myocardial Infarction; Rats; Rats, Wistar; Renin-Angiotensin System; Stroke Volume; Sulfonic Acids; Sympathetic Nervous System; Ventricular Dysfunction, Left

2013
Central antihypertensive effects of orally active aminopeptidase A inhibitors in spontaneously hypertensive rats.
    Hypertension (Dallas, Tex. : 1979), 2012, Volume: 60, Issue:2

    Brain renin-angiotensin system hyperactivity has been implicated in the development and maintenance of hypertension. We reported previously in the brain that aminopeptidase A and aminopeptidase N are involved in the metabolism of angiotensin II and angiotensin III, respectively. By using in vivo specific and selective aminopeptidase A and aminopeptidase N inhibitors, we showed that angiotensin III is one of the main effector peptides of the brain renin-angiotensin system, exerting a tonic stimulatory control more than blood pressure in hypertensive rats. Aminopeptidase A, the enzyme generating brain angiotensin III, thus represents a potential target for the treatment of hypertension. We demonstrated here the antihypertensive effects of RB150, a prodrug of the specific and selective aminopeptidase A inhibitor, EC33, in spontaneously hypertensive rats, a model of human essential hypertension. Oral administration of RB150 in conscious spontaneously hypertensive rats inhibited brain aminopeptidase A activity, demonstrating the central bioavailability of RB150 and its ability to generate EC33 into the brain. Oral RB150 treatment dose-dependently reduced blood pressure in spontaneously hypertensive rats with an ED(50) of 30 mg/kg, lasting for several hours. This decrease in blood pressure is partly attributed to a decrease in sympathetic tone, reducing vascular resistance. This treatment did not modify systemic renin-angiotensin system activity. Concomitant oral administration of RB150 with a systemic renin-angiotensin system blocker, enalapril, potentiated the RB150-induced blood pressure decrease achieved in <2 hours. Thus, RB150 may be the prototype of a new class of centrally active antihypertensive agents that might be used in combination with classic systemic renin-angiotensin system blockers to improve blood pressure control.

    Topics: Administration, Oral; Animals; Antihypertensive Agents; Blood Pressure; Brain; Disease Models, Animal; Disulfides; Dose-Response Relationship, Drug; Enalapril; Enzyme Inhibitors; Glutamyl Aminopeptidase; Heart Rate; Hypertension; Male; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Renin-Angiotensin System; Sulfonic Acids

2012
Orally active aminopeptidase A inhibitors reduce blood pressure: a new strategy for treating hypertension.
    Hypertension (Dallas, Tex. : 1979), 2008, Volume: 51, Issue:5

    Overactivity of the brain renin-angiotensin system has been implicated in the development and maintenance of hypertension. We reported previously that angiotensin II is converted to angiotensin III by aminopeptidase A in the mouse brain. We then used specific and selective aminopeptidase A inhibitors to show that angiotensin III is one of the main effector peptides of the brain renin-angiotensin system, exerting tonic stimulatory control over blood pressure in hypertensive rats. Aminopeptidase A, the enzyme generating brain angiotensin III, thus represents a potential candidate central nervous system target for the treatment of hypertension. Given this possible clinical use of aminopeptidase A inhibitors, it was, therefore, important to investigate their pharmacological activity after oral administration. We investigated RB150, a dimer of the selective aminopeptidase A inhibitor, EC33, generated by creating a disulfide bond. This chemical modification allows prodrug to cross the blood-brain barrier when administered by systemic route. Oral administration of RB150 in conscious DOCA-salt rats inhibited brain aminopeptidase A activity, resulting in values similar to those obtained with the brains of normotensive rats, demonstrating the central bioavailability of RB150. Oral RB150 treatment resulted in a marked dose-dependent reduction in blood pressure in DOCA-salt but not in normotensive rats, with an ED(50) in the 1-mg/kg range, achieved in <2 hours and lasting for several hours. This treatment also significantly decreased plasma arginine-vasopressin levels and increased diuresis, which may participate to the blood pressure decrease by reducing the size of fluid compartment. Thus, RB150 may be the prototype of a new class of centrally active antihypertensive agents.

    Topics: Administration, Oral; Animals; Arginine Vasopressin; Blood Pressure; Disease Models, Animal; Disulfides; Diuresis; Drinking; Enzyme Inhibitors; Glutamyl Aminopeptidase; Hypertension; Male; Rats; Rats, Inbred Dahl; Rats, Inbred WKY; Sulfonic Acids

2008