ramipril and Hypertrophy--Right-Ventricular

ramipril has been researched along with Hypertrophy--Right-Ventricular* in 2 studies

Other Studies

2 other study(ies) available for ramipril and Hypertrophy--Right-Ventricular

ArticleYear
Right ventricular hypertrophy and apoptosis after pulmonary artery banding: regulation of PKC isozymes.
    Cardiovascular research, 2003, Sep-01, Volume: 59, Issue:3

    Pressure overload induced by pulmonary artery banding (PAB) leads to right ventricular (RV) hypertrophy and cardiomyocyte apoptosis. The present study was performed to investigate whether protein kinase C isozymes (PKC-alpha, PKC-betaI, PKC-betaII, PKC-delta and PFC- epsilon ), calcineurin and the renin-angiotensin system (RAS) contribute to PAB-induced cardiac remodeling.. PAB in male Wistar rats for 3 weeks results in enhanced PKC activity (as determined by ELISA assay) in the cytosol and membrane fraction of the hypertrophied RV, which was accompanied by increased expression (as determined by Western blot analysis) of cytosolic PKC-delta (+72%), PKC-alpha (+49%), and PKC-betaI (+39%), but not PKC-betaII and PKC- epsilon. This differential regulation of cardiac PKC isozymes was limited to the strained ventricle and was not altered in response to chronic angiotensin-converting enzyme inhibition with ramiprilate. Furthermore, no significant changes in the expression of calcineurin alpha and beta subunits were observed in RV pressure overload compared to controls. PAB-induced cardiac apoptosis was determined using Western blot analysis by a significantly increased expression of Bax protein and caspase-3 in the hypertrophied RV, which was diminished to almost control levels by chronic ramiprilate treatment. The myocardial expression of Bcl-2 was not significantly altered in the experimental groups.. We have shown for the first time that PAB-induced RV hypertrophy is associated with a differential regulation of cardiac PKC isozymes independent of the RAS and further provide evidence for a pivotal role of the RAS in the development of PAB-induced cardiac apoptosis.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Apoptosis; bcl-2-Associated X Protein; Calcineurin; Constriction, Pathologic; Hypertrophy, Right Ventricular; Immunoblotting; Isoenzymes; Male; Myocardium; Protein Kinase C; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; Pulmonary Artery; Ramipril; Rats; Rats, Wistar

2003
Possible protective effects of kinins and converting enzyme inhibitors in cardiovascular tissues.
    Immunopharmacology, 1997, Volume: 36, Issue:2-3

    The main objective of this study was to determine if the components of the kallikrein-kinin system are released into the venous effluent from isolated perfused rat hearts. To assess the contribution of kinins and the vascular and cardioprotective effects of the ACE inhibitor ramipril, we determined the status of cardiac kallikrein (CKK), potent kinin-generating enzyme, in rats with right ventricular hypertrophy induced by chronic volume overload and left ventricular hypertrophy by aortic banding. CKK was measured as previously described (Nolly, H.L., Carbini, L., Carretero, O.A., Scicli, A.G., 1994). Kininogen by a modification of the technique of Dinitz and Carvalho (1963) and kinins were extracted with a Sep-Pak C18 cartridge and measured by RIA. CKK (169 +/- 9 pg Bk/30 min), kininogen (670 +/- 45 pg Bk/30 min) and immunoreactive kinins (62 +/- 10 pg Bk/30 min) were released into the perfusate. The release was almost constant over a 120 min period. Pretreatment with the protein synthesis inhibitor puromycin (10 mg i.p.) lowered the release of kallikrein (42 +/- 12 pg Bk/30 min, p < 0.001) and kininogen (128 +/- 56 pg Bk/30 min, p < 0.001). Addition of ramiprilat (10 micrograms/ml) increased kinin release from 54 +/- 18 to 204 +/- 76 pg Bk/30 min (p < 0.001). Aortic banding of rats increased their blood pressure (BP) (p < 0.001), relative heart weight (RHW) (p < 0.001) and CKK (p < 0.001). Ramipril treatment induced a reduction in BP (p < 0.05) and RHW (p < 0.005) while CKK remained elevated. Aortocaval shunts increased their ANF plasma levels (p < 0.05), RHW (p < 0.001) and CKK (p < 0.01). Ramipril treatment induced a reduction in RHW (p < 0.05), while CKK and ANF increased significantly (p < 0.05). The present data show that the components of the kallikrein-kinin system are continuously formed in the isolated rat heart and that ramipril reduces bradykinin breakdown with subsequent increase in bradykinin outflow. The experiments with aorta caval shunt and aortic banding show that cardiac tissues increase their kinin-generating activity and this was even higher in ramipril-treated animals. This may suggest that the actual level of kinins is finely tuned to the local metabolic demands. In this experimental model of cardiac hypertrophy. ACE inhibitors potentiate the actions of kinins and probably try to normalise endothelial cell function.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Arteriovenous Shunt, Surgical; Atrial Natriuretic Factor; Blood Pressure; Bradykinin; Disease Models, Animal; Heart; Heart Failure; Hypertension; Hypertrophy, Left Ventricular; Hypertrophy, Right Ventricular; Kallikrein-Kinin System; Kallikreins; Kininogens; Male; Myocardium; Organ Size; Protein Synthesis Inhibitors; Puromycin; Radioimmunoassay; Ramipril; Rats; Rats, Wistar

1997