ramipril has been researched along with Aortic-Diseases* in 2 studies
2 other study(ies) available for ramipril and Aortic-Diseases
Article | Year |
---|---|
Aldosterone administration to mice stimulates macrophage NADPH oxidase and increases atherosclerosis development: a possible role for angiotensin-converting enzyme and the receptors for angiotensin II and aldosterone.
The renin-angiotensin-aldosterone system is involved in the pathogenesis of atherosclerosis, partially because of its pro-oxidative properties. We questioned the effect and mechanisms of action of administration of aldosterone to apolipoprotein E-deficient (E(0)) mice on their macrophages and aorta oxidative status and the ability of pharmacological agents to block this effect.. Aldosterone (0.2 to 6 microg. mouse(-1) x d(-1)) was administered to E(0) mice alone or in combination with eplerenone (200 mg x kg(-1) x d(-1)), ramipril (5 mg x kg(-1) x d(-1)), or losartan (25 mg x kg(-1) x d(-1)). Mouse aortic atherosclerotic lesion area and macrophage and aortic oxidative status were evaluated. Aldosterone administration enhanced the mouse atherosclerotic lesion area by 32%. Mouse peritoneal macrophages and aortic segments from aldosterone-treated mice exhibited increased superoxide anion formation by up to 155% and 69%, respectively, and this effect was probably mediated by NADPH oxidase activation, because increased translocation of its cytosolic component p47phox to the macrophage plasma membrane was observed. THP-1 macrophages incubated in vitro with aldosterone (10 micromol/L) exhibited a higher capacity to release superoxide ions by 110% and increased ability to oxidize LDL by 74% compared with control cells. Aldosterone administration enhanced mouse peritoneal macrophage ACE activity and mRNA expression by 2.3-fold and 2.4-fold, respectively. Only cotreatment of eplerenone with ramipril or losartan completely blocked the oxidative effects of aldosterone.. Aldosterone administration to E(0) mice increased macrophage oxidative stress and atherosclerotic lesion development. Blocking of the mineralocorticoid receptor and inhibition of tissue ACE and/or the angiotensin receptor-1 reduced aldosterone deleterious pro-oxidative and proatherogenic effects. Topics: Aldosterone; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Aortic Diseases; Apolipoproteins E; Arteriosclerosis; Cell Line; Enzyme Induction; Eplerenone; Hormone Antagonists; Humans; Lipid Peroxidation; Lipoproteins, LDL; Losartan; Macrophages, Peritoneal; Membrane Proteins; Mice; Mice, Knockout; Mineralocorticoid Receptor Antagonists; NADPH Oxidases; Oxidative Stress; Peptidyl-Dipeptidase A; Phosphoproteins; Protein Transport; Ramipril; Receptor, Angiotensin, Type 1; Receptors, Mineralocorticoid; RNA, Messenger; Spironolactone; Superoxides | 2004 |
Interaction between the renin-angiotensin system and insulin-like growth factor I in aorto-caval fistula-induced cardiac hypertrophy in rats.
The effects of angiotensin converting enzyme inhibition and angiotensin II receptor blockade on the development of cardiac hypertrophy and myocardial insulin-like growth factor I (IGF-I) in volume overload were studied in male Wistar rats with aorto-caval fistulas (ACF). Rats were treated with ramipril (RAM, 3 mg kg(-1) day(-1)) for 4-20 days or losartan (LOS, 10 mg kg(-1) day(-1)) for 2-7 days. Myocardial IGF-I and IGF-I receptor (IGF-I-R) mRNA were determined by solution hybridization. ACF caused hypertrophy of left (LV) and right ventricles (RV). Hypertrophy appeared on day 2 and reached maximal values of +60% in LV and +75% in RV at day 12. Systolic blood pressure was initially reduced 15% but recovered by day 12. RAM abolished the recovery of blood pressure. Furthermore, RAM attenuated RV hypertrophy by 17% on day 7 and on day 20, RV weights were close to values found in controls. Beginning on day 9, RAM reduced LV weight back to control levels in parallel to blood pressure. In contrast, LOS affected neither RV nor LV hypertrophy. RV IGF-I mRNA increased 60-100% on day 7 alone in RV in ACF. RAM potentiated the increase in RV IGF-I to +400% and induced an increase in RV IGF-I-R mRNA on day 7 (+90%) in ACF. LOS did not affect RV IGF-I. Development of cardiac hypertrophy in ACF seemed independent of angiotensin II. RV hypertrophy was associated with activation of IGF-I independent of the renin-angiotensin system. IGF-I was further potentiated when development of hypertrophy was attenuated, possibly indicative of a greater urge for compensational growth in a relatively thinner and more volume-distended chamber. Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Antihypertensive Agents; Aorta, Abdominal; Aortic Diseases; Arteriovenous Fistula; Cardiomegaly; Disease Models, Animal; Follow-Up Studies; Hemodynamics; Insulin-Like Growth Factor I; Losartan; Male; Myocardium; Pilot Projects; Ramipril; Rats; Rats, Wistar; Receptor, IGF Type 1; Renin-Angiotensin System; RNA, Messenger; Vena Cava, Inferior | 1999 |