raclopride has been researched along with Disease-Models--Animal* in 53 studies
3 review(s) available for raclopride and Disease-Models--Animal
Article | Year |
---|---|
Experimental protocols for behavioral imaging: seeing animal models of drug abuse in a new light.
Behavioral neuroimaging is a rapidly evolving discipline that represents a marriage between the fields of behavioral neuroscience and preclinical molecular imaging. This union highlights the changing role of imaging in translational research. Techniques developed for humans are now widely applied in the study of animal models of brain disorders such as drug addiction. Small animal or preclinical imaging allows us to interrogate core features of addiction from both behavioral and biological endpoints. Snapshots of brain activity allow us to better understand changes in brain function and behavior associated with initial drug exposure, the emergence of drug escalation, and repeated bouts of drug withdrawal and relapse. Here we review the development and validation of new behavioral imaging paradigms and several clinically relevant radiotracers used to capture dynamic molecular events in behaving animals. We will discuss ways in which behavioral imaging protocols can be optimized to increase throughput and quantitative methods. Finally, we discuss our experience with the practical aspects of behavioral neuroimaging, so investigators can utilize effective animal models to better understand the addicted brain and behavior. Topics: Animals; Brain; Disease Models, Animal; Dopamine; Fluorodeoxyglucose F18; Humans; Neuroimaging; Raclopride; Radionuclide Imaging; Substance-Related Disorders | 2012 |
PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation.
Animals self-administer many of the drugs that humans abuse, including cocaine. This article describes studies using preclinical animal models to differentiate the influences of neurobiological predisposition from environmental modulation of cocaine addiction, including studies from the authors' laboratory using nonhuman primates.. Addiction is described in terms of vulnerability, maintenance, and abstinence. This review focuses on dopamine receptor function, in particular that of the D2-like receptors, as measured by the noninvasive imaging procedure positron emission tomography. Findings from human studies of addiction and animal models are reviewed.. There appears to be an inverse relationship between D2 receptor availability and vulnerability to the reinforcing effects of cocaine. Environmental variables can increase or decrease D2 receptor binding in an orderly fashion, and the resulting changes in D2 function influence the vulnerability to abuse cocaine. In maintenance, chronic cocaine exposure produces decreases in D2 receptor binding, which may be a mechanism that contributes to continued drug use. Finally, during abstinence there are individual differences in rates of recovery of D2 receptor availability.. The goal of the preclinical research described in this review is to achieve a better understanding of individual differences in susceptibility and vulnerability to the reinforcing effects of cocaine. It is clear that the development of novel animal models will extend our understanding of the neurobiological basis of drug addiction to include a greater appreciation of the role of environmental factors in affecting predisposition, mediating continued drug use, and triggering relapse. Topics: Animals; Autoradiography; Basal Ganglia; Behavior, Addictive; Behavior, Animal; Benzamides; Brain; Cocaine-Related Disorders; Corpus Striatum; Disease Models, Animal; Genetic Predisposition to Disease; Haplorhini; Humans; Piperidines; Positron-Emission Tomography; Raclopride; Receptors, Dopamine D2; Social Dominance; Social Environment | 2005 |
Are animal studies of antipsychotics appropriately dosed? Lessons from the bedside to the bench.
Animal models are crucial for understanding the mechanism of action of antipsychotics. However, the dose of an antipsychotic in animal studies is often arbitrarily chosen, with haloperidol 1 mg/kg being a rather common standard. Recent clinical positron emission tomography (PET) studies in patients show all antipsychotics to block dopamine D2 receptors, and most are effective at doses that lead to 60% to 80% D2 occupancy. When occupancy exceeds 80%, the incidence of side effects rises sharply. To use this "bedside" information to inform the "bench," we measured D2 occupancy in rats using a method similar in principle to the [11C]-raclopride PET method in humans. We found that: 1) as in humans, haloperidol is effective in animal models of antipsychotic action when D2 occupancy > 70% and leads to effects in models of extrapyramidal side effects when D2 occupancy is > 80%; 2) very low doses, 0.06 mg/kg/sc, cause acute D2 occupancy of 75%; 3) and even doses that acutely saturate D2 receptors give little D2 occupancy after 24 hours due to the very short half-life of haloperidol in rats (2.5 hours versus 24 hours in humans). We conclude that most previous animal studies of antipsychotics have used doses giving rise to inappropriately high acute D2 occupancy and inappropriately low D2 occupancy between doses. We exemplify how this dosing confounder could lead to inappropriate conclusions. Data from the bedside translated to the bench--using D2 occupancy as a mediating variable--will lead to more valid animal models. Topics: Animals; Antipsychotic Agents; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Haloperidol; Male; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Schizophrenia | 2000 |
50 other study(ies) available for raclopride and Disease-Models--Animal
Article | Year |
---|---|
Beta band modulation by dopamine D2 receptors in the primary motor cortex and pedunculopontine nucleus in a rat model of Parkinson's disease.
Beta band (12-30 Hz) hypersynchrony within the basal ganglia-thalamocortical network has been suggested as a hallmark of Parkinson's disease (PD) pathophysiology. Abnormal beta band oscillations are found in the pedunculopontine nucleus (PPN) and primary motor cortex (M1) and are correlated with dopamine depletion. Dopamine acts locomotion and motor performance mainly through dopamine receptors (D1 and D2). However, the precise mechanism by which dopamine receptors regulate beta band electrophysiological activities between the PPN and M1 is still unknown. Here, we recorded the neuronal activity of the PPN and M1 simultaneously by the administration of the drug (SCH23390 and raclopride), selectively blocking the dopamine D1 receptor and D2 receptor. We discovered that the increased coherent activity of the beta band (12-30 Hz) between M1 and PPN in the lesioned group could be reduced and restored by injecting raclopride in the resting and wheel running states. Our studies revealed the unique role of D2 dopamine receptor signaling in regulating β band oscillatory activity in M1 and PPN and their relationship after the loss of dopamine, which contributes to elucidating the underlying mechanism of the pathophysiology of PD. Topics: Animals; Benzazepines; Beta Rhythm; Disease Models, Animal; Dopamine Antagonists; Motor Cortex; Parkinson Disease; Pedunculopontine Tegmental Nucleus; Raclopride; Rats; Receptors, Dopamine D1; Receptors, Dopamine D2 | 2022 |
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Inhibition of natriuretic peptide receptor 1 reduces itch in mice.
There is a major clinical need for new therapies for the treatment of chronic itch. Many of the molecular components involved in itch neurotransmission are known, including the neuropeptide NPPB, a transmitter required for normal itch responses to multiple pruritogens in mice. Here, we investigated the potential for a novel strategy for the treatment of itch that involves the inhibition of the NPPB receptor NPR1 (natriuretic peptide receptor 1). Because there are no available effective human NPR1 (hNPR1) antagonists, we performed a high-throughput cell-based screen and identified 15 small-molecule hNPR1 inhibitors. Using in vitro assays, we demonstrated that these compounds specifically inhibit hNPR1 and murine NPR1 (mNPR1). In vivo, NPR1 antagonism attenuated behavioral responses to both acute itch- and chronic itch-challenged mice. Together, our results suggest that inhibiting NPR1 might be an effective strategy for treating acute and chronic itch. Topics: Animals; Behavior, Animal; Cell-Free System; Dermatitis, Contact; Disease Models, Animal; Ganglia, Spinal; Humans; Mice, Inbred C57BL; Mice, Knockout; Neurons; Pruritus; Receptors, Atrial Natriuretic Factor; Reproducibility of Results; Signal Transduction; Small Molecule Libraries | 2019 |
Metoclopramide inhibits trigeminovascular activation:evidence for effective acute attack treatment in migraine.
Metoclopramide is an effective and commonly used medication in acute migraine treatment but an experimental evidence base is lacking. We aimed to investigate the antimigraine effect of metoclopramide in a migraine model and whether the analgesic effect of metoclopramide was likely to be D. Cortical spreading depression (CSD) was used to model migraine in adult male Wistar rats. Five CSDs were induced by pinprick. Metoclopramide (two different doses), raclopride, or 0.9% saline were administered 30 min before CSD induction. Two hours after the experiments, brain tissues were examined for c-fos activation.. In metoclopramide groups brain stem c-fos expression was significantly lower than in the CSD side of the saline group (P = 0.002). In the raclopride group, ipsilateral brain stem c-fos expression was also lower than in the saline group (P = 0.002). No difference in c-fos expression in the ipsilateral trigeminal nucleus caudalis between the raclopride and metoclopramide groups was observed (P > 0.05).. Metoclopramide is shown to suppress trigeminovascular activation for the first time, providing an experimental basis for its role in migraine. The analgesic effect of metoclopramide is likely to be mediated by D Topics: Animals; Brain Chemistry; Cortical Spreading Depression; Disease Models, Animal; Male; Metoclopramide; Migraine Disorders; Proto-Oncogene Proteins c-fos; Raclopride; Rats; Rats, Wistar; Trigeminal Caudal Nucleus | 2017 |
Role of dopamine neurotransmission in the long-term effects of repeated social defeat on the conditioned rewarding effects of cocaine.
Numerous studies report that social defeat stress alters dopamine (DA) neurotransmission in several areas of the brain. Alterations of the mesolimbic dopaminergic pathway are believed to be responsible for the increased vulnerability to drug use observed as a result of social stress. In the present study, we evaluated the influence of DA receptors on the long-term effect of repeated social defeat (RSD) on the conditioned rewarding and reinstating effects of cocaine. For this purpose, the D1R antagonist SCH 23390 and the D1R antagonist raclopride were administered 30min before each social defeat and a cocaine-induced CPP procedure was initiated three weeks later. The expression of the D1R and D2R was also measured in the cortex and hippocampus throughout the entire procedure. Mice exposed to RSD showed an increase in the conditioned rewarding effects of cocaine that was blocked by both DA receptors antagonists when a subthreshold dose of cocaine was employed. However, while the vulnerability to reinstatement of the preference induced by 25mg/kg cocaine-induced CPP was abolished by the D1R antagonist, it was practically unaffected by raclopride. Increases in D2R receptor levels were observed in the cortex of defeated animals after the first and fourth social defeats and in the hippocampus 3weeks later. Nevertheless, D1R receptor levels in the hippocampus decreased only after the last social defeat. Our results confirm that RSD enhances the conditioned rewarding effects of cocaine and that both DA receptors are involved in this enduring effect of social stress. Topics: Age Factors; Animals; Benzazepines; Cerebral Cortex; Cocaine; Conditioning, Operant; Disease Models, Animal; Dopamine Antagonists; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Hippocampus; Male; Mice; Raclopride; Receptors, Dopamine; Reward; Statistics, Nonparametric; Stress, Psychological | 2016 |
Neurocognitive dysfunction and pharmacological intervention using guanfacine in a rhesus macaque model of self-injurious behavior.
Self-injurious behavior (SIB) is a common comorbidity of psychiatric disorders but there is a dearth of information about neurological mechanisms underlying the behavior, and few animal models exist. SIB in humans is characterized by any intentional self-directed behavior that leads to wounds, whereas in macaques it is not always accompanied by wounds. We describe a cohort of rhesus macaques displaying SIB as adults, in which changes within the central nervous system were associated with the SIB. In these macaques, increases in central nervous system striatal dopamine (DA) receptor binding (BPND) measured by positron emission tomography (PET) [11C]raclopride imaging correlated with severity of wounding (rs=0.662, P=0.014). Furthermore, utilizing standardized cognitive function tests, we showed that impulsivity (stop signal reaction time, SSRT) and deficits in attentional set shifting (intra-/extradimensional shift) were correlated with increased severity of SIB (rs=0.563, P=0.045 and rs=0.692, P=0.009, respectively). We also tested the efficacy of guanfacine, an α2A adrenergic agonist that acts to improve postsynaptic transmission of neuronal impulses, in reducing SIB. A subset of these animals were enrolled in a randomized experimenter-blinded study that demonstrated guanfacine decreased the severity of wounding in treated animals compared with vehicle-only-treated controls (P=0.043), with residual beneficial effects seen for several weeks after cessation of therapy. Animals with the highest severity of SIB that received guanfacine also showed the most significant improvement (rs=-0.761, P=0.009). The elevated PET BPND was likely due to low intrasynaptic DA, which in turn may have been improved by guanfacine. With underlying physiology potentially representative of the human condition and the ability to affect outcome measures of disease using pharmacotherapy, this model represents a unique opportunity to further our understanding of the biology and treatment of SIB in both animals and humans. Topics: Adrenergic alpha-2 Receptor Agonists; Animals; Attention; Behavior, Animal; Carbon Radioisotopes; Cognition; Cognition Disorders; Disease Models, Animal; Dopamine Antagonists; Guanfacine; Impulsive Behavior; Macaca mulatta; Male; Neostriatum; Neuropsychological Tests; Positron-Emission Tomography; Raclopride; Random Allocation; Reaction Time; Receptors, Dopamine; Self-Injurious Behavior; Severity of Illness Index | 2015 |
Effects of lisdexamfetamine in a rat model of binge-eating.
Binge-eating disorder is a common psychiatric disorder affecting ~2% of adults. Binge-eating was initiated in freely-fed, lean, adult, female rats by giving unpredictable, intermittent access to ground, milk chocolate over four weeks. The rats avidly consumed chocolate during 2 hr binge sessions, with compensatory reductions of normal chow intake in these sessions and the days thereafter. Bodyweights of binge-eating rats were normal. The model's predictive validity was explored using nalmefene (0.1-1.0mg/kg), R-baclofen (1.0-10mg/kg) and SB-334867 (3.0-30 mg/kg) (orexin-1 antagonist), which all selectively decreased chocolate bingeing without reducing chow intake. Sibutramine (0.3-5.0mg/kg) non-selectively reduced chocolate and chow consumption. Olanzapine (0.3-3.0mg/kg) was without effect and rolipram (1.0-10mg/kg) abolished all ingestive behaviour. The pro-drug, lisdexamfetamine (LDX; 0.1-1.5mg/kg), dose-dependently reduced chocolate bingeing by ⩽ 71% without significantly decreasing normal chow intake. Its metabolite, D-amphetamine (0.1-1.0mg/kg), dose-dependently and preferentially decreased chocolate bingeing ⩽ 56%. Using selective antagonists to characterize LDX's actions revealed the reduction of chocolate bingeing was partially blocked by prazosin (α1-adrenoceptor; 0.3 and 1.0mg/kg) and possibly by SCH-23390 (D1; 0.1mg/kg). RX821002 (α2-adrenoceptor; 0.1 and 0.3mg/kg) and raclopride (D2; 0.3 and 0.5mg/kg) were without effect. The results indicate that LDX, via its metabolite, d-amphetamine, reduces chocolate bingeing, partly by indirect activation of α1-adrenoceptors and perhaps D1 receptors. Topics: Animals; Baclofen; Behavior, Animal; Benzazepines; Benzodiazepines; Body Weight; Bulimia; Disease Models, Animal; Eating; Feeding Behavior; Female; Idazoxan; Lisdexamfetamine Dimesylate; Naltrexone; Olanzapine; Prazosin; Prodrugs; Raclopride; Rats; Rats, Wistar; Rolipram | 2015 |
A sex- and region-specific role of Akt1 in the modulation of methamphetamine-induced hyperlocomotion and striatal neuronal activity: implications in schizophrenia and methamphetamine-induced psychosis.
AKT1 (also known as protein kinase B, α), a serine/threonine kinase of AKT family, has been implicated in both schizophrenia and methamphetamine (Meth) use disorders. AKT1 or its protein also has epistatic effects on the regulation of dopamine-dependent behaviors or drug effects, especially in the striatum. The aim of this study is to investigate the sex-specific role of Akt1 in the regulation of Meth-induced behavioral sensitization and the alterations of striatal neurons using Akt1(-/-) mice and wild-type littermates as a model. A series of 4 Experiments were conducted. Meth-induced hyperlocomotion and Meth-related alterations of brain activity were measured. The neural properties of striatal medium spiny neurons (MSNs) were also characterized. Further, 17β-estradiol was applied to examine its protective effect in Meth-sensitized male mice. Our findings indicate that (1) Akt1(-/-) males were less sensitive to Meth-induced hyperlocomotion during Meth challenge compared with wild-type controls and Akt1(-/-) females, (2) further sex differences were revealed by coinjection of Meth with raclopride but not SCH23390 in Meth-sensitized Akt1(-/-) males, (3) Meth-induced alterations of striatal activity were confirmed in Akt1(-/-) males using microPET scan with (18)F-flurodeoxyglucose, (4) Akt1 deficiency had a significant impact on the electrophysiological and neuromorphological properties of striatal MSNs in male mice, and (5) subchronic injections of 17β-estradiol prevented the reduction of Meth-induced hyperactivity in Meth-sensitized Akt1(-/-) male mice. This study highlights a sex- and region-specific effect of Akt1 in the regulation of dopamine-dependent behaviors and implies the importance of AKT1 in the modulation of sex differences in Meth sensitivity and schizophrenia. Topics: Animals; Antipsychotic Agents; Behavior, Animal; Benzazepines; Disease Models, Animal; Estradiol; Estrogens; Female; Hyperkinesis; Male; Methamphetamine; Mice; Mice, Inbred C57BL; Mice, Knockout; Neostriatum; Neurons; Proto-Oncogene Proteins c-akt; Psychoses, Substance-Induced; Raclopride; Schizophrenia; Sex Factors | 2014 |
Relation between microPET imaging and rotational behavior in a parkinsonian rat model induced by medial forebrain bundle axotomy.
The purpose of the current study was to examine the relation between apomorphine (APO) induced rotational behavior and the pre- and post-synaptic dopaminergic function in a parkinsonian rat model induced by medial forebrain bundle (MFB) axotomy. The brains of these rats were unilaterally lesioned by mechanical transection of the nigrostriatal dopamine pathway at the MFB. Behavioral studies were carried out by APO challenge prior to and 1, 3, and 5 weeks after MFB axotomy. MicroPET scans with [(11)C]CFT and [(11)C]raclopride were performed 2 days after the behavioral test. The two PET scans were separated by an interval of 24-48 h. Immunohistochemistry was conducted 4 days after the last PET scan. Our data showed that [(11)C]CFT binding decreased progressively 1, 3, and 5 weeks postlesion, and there was a significant nonlinear correlation between [(11)C]CFT uptake ratio (right/left) and APO induced rotations. In contrast, [(11)C]raclopride binding only increased significantly 3 weeks postlesion, and there was a positive linear correlation between [(11)C]raclopride uptake ratio (right/left) and APO induced rotations. Postmortem immunohistochemical studies confirmed the loss of both striatal dopamine fibers and nigral neurons on the lesioned side. These findings not only demonstrate the relation between APO induced rotational behavior and the pre- and post-synaptic dopamine function but also indicate the utility and validity of in vivo PET imaging in understanding disease mechanisms and progression, which should in turn lead to development of new therapies. Topics: Animals; Apomorphine; Axotomy; Cocaine; Corpus Striatum; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dopamine Uptake Inhibitors; Functional Laterality; Male; Medial Forebrain Bundle; Parkinson Disease; Raclopride; Radionuclide Imaging; Rats; Rats, Wistar; Stereotyped Behavior; Substantia Nigra; Time Factors; Tyrosine 3-Monooxygenase | 2014 |
A novel transgenic rat model for spinocerebellar ataxia type 17 recapitulates neuropathological changes and supplies in vivo imaging biomarkers.
Spinocerebellar ataxia 17 (SCA17) is an autosomal-dominant, late-onset neurodegenerative disorder caused by an expanded polyglutamine (polyQ) repeat in the TATA-box-binding protein (TBP). To further investigate this devastating disease, we sought to create a first transgenic rat model for SCA17 that carries a full human cDNA fragment of the TBP gene with 64 CAA/CAG repeats (TBPQ64). In line with previous observations in mouse models for SCA17, TBPQ64 rats show a severe neurological phenotype including ataxia, impairment of postural reflexes, and hyperactivity in early stages followed by reduced activity, loss of body weight, and early death. Neuropathologically, the severe phenotype of SCA17 rats was associated with neuronal loss, particularly in the cerebellum. Degeneration of Purkinje, basket, and stellate cells, changes in the morphology of the dendrites, nuclear TBP-positive immunoreactivity, and axonal torpedos were readily found by light and electron microscopy. While some of these changes are well recapitulated in existing mouse models for SCA17, we provide evidence that some crucial characteristics of SCA17 are better mirrored in TBPQ64 rats. Thus, this SCA17 model represents a valuable tool to pursue experimentation and therapeutic approaches that may be difficult or impossible to perform with SCA17 transgenic mice. We show for the first time positron emission tomography (PET) and diffusion tensor imaging (DTI) data of a SCA animal model that replicate recent PET studies in human SCA17 patients. Our results also confirm that DTI are potentially useful correlates of neuropathological changes in TBPQ64 rats and raise hope that DTI imaging could provide a biomarker for SCA17 patients. Topics: Animals; Anxiety; Body Weight; Brain; Diffusion Tensor Imaging; Disease Models, Animal; Electronic Data Processing; Female; Genotype; Humans; Male; Maze Learning; Motor Activity; Neurologic Examination; Positron-Emission Tomography; Psychomotor Performance; Raclopride; Rats; Rats, Transgenic; Rotarod Performance Test; Severity of Illness Index; Spinocerebellar Ataxias; TATA-Box Binding Protein; Trinucleotide Repeat Expansion; Tubulin | 2013 |
Inhibiting subthalamic D5 receptor constitutive activity alleviates abnormal electrical activity and reverses motor impairment in a rat model of Parkinson's disease.
Burst firing has been reported as a pathological activity of subthalamic nucleus (STN) neurons in Parkinson's disease. However, the origin of bursts and their causal link with motor deficits remain unknown. Here we tested the hypothesis that dopamine D5 receptors (D5Rs), characterized by a high constitutive activity, may contribute to the emergence of burst firing in STN. We tested whether inhibiting D5R constitutive activity depresses burst firing and alleviates motor impairments in the 6-OHDA rat model of Parkinson's disease. Intrasubthalamic microinjections of either an inverse agonist of D5Rs, flupenthixol, or a D2R antagonist, raclopride, were applied. Behavioral experiments, in vivo and in vitro electrophysiological recordings, and ex vivo functional neuroanatomy studies were performed. Using [(5)S]GTPγ binding autoradiography, we show that application of flupenthixol inhibits D5R constitutive activity within the STN. Furthermore, flupenthixol reduced evoked burst in brain slices and converted pathological burst firing into physiological tonic, single-spike firing in 6-OHDA rats in vivo. This later action was mimicked by calciseptine, a Cav1 channel blocker. Moreover, the same treatment dramatically attenuated motor impairment in this model and normalized metabolic hyperactivity in both STN and substantia nigra pars reticulata, the main output structure of basal ganglia in rats. In contrast, raclopride as well as saline did not reverse burst firing and motor deficits, confirming the selective action of flupenthixol on D5Rs. These results are the first to demonstrate that subthalamic D5Rs are involved in the pathophysiology of Parkinson's disease and that administering an inverse agonist of these receptors may lessen motor symptoms. Topics: Action Potentials; Animals; Animals, Newborn; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Female; Flupenthixol; In Vitro Techniques; Locomotion; Male; Neurons; Oxidopamine; Parkinson Disease; Raclopride; Rats; Rats, Wistar; Receptors, Dopamine D5; Statistics, Nonparametric; Subthalamic Nucleus | 2013 |
Serotonergic modulation of receptor occupancy in rats treated with L-DOPA after unilateral 6-OHDA lesioning.
Recent studies suggest that l-3,4 dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID), a severe complication of conventional L-DOPA therapy of Parkinson's disease, may be caused by dopamine (DA) release originating in serotonergic neurons. To evaluate the in vivo effect of a 5-HT(1A) agonist [(±)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide, 8-OHDPAT] on the L-DOPA-induced increase in extracellular DA and decrease in [(11) C]raclopride binding in an animal model of advanced Parkinson's disease and LID, we measured extracellular DA in response to L-DOPA or a combination of L-DOPA and the 5-HT(1A) agonist, 8-OHDPAT, with microdialysis, and determined [(11) C]raclopride binding to DA receptors, with micro-positron emission tomography, as the surrogate marker of DA release. Rats with unilateral 6-hydroxydopamine lesions had micro-positron emission tomography scans with [(11) C]raclopride at baseline and after two pharmacological challenges with L-DOPA + benserazide with or without 8-OHDPAT co-treatment. Identical challenge regimens were used with the subsequent microdialysis concomitant with ratings of LID severity. The baseline increase of [(11) C]raclopride-binding potential (BP(ND) ) in lesioned striatum was eliminated by the L-DOPA challenge, while the concurrent administration of 8-OHDPAT prevented this L-DOPA-induced displacement of [(11) C]raclopride significantly in lesioned ventral striatum and near significantly in the dorsal striatum. With microdialysis, the L-DOPA challenge raised the extracellular DA in parallel with the emergence of strong LID. Co-treatment with 8-OHDPAT significantly attenuated the release of extracellular DA and LID. The 8-OHDPAT co-treatment reversed the L-DOPA-induced decrease of [(11) C]raclopride binding and increase of extracellular DA and reduced the severity of LID. The reversal of the effect of L-DOPA on [(11) C]raclopride binding, extracellular DA and LID by 5-HT agonist administration is consistent with the notion that part of the DA increase associated with LID originates in serotonergic neurons. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Analysis of Variance; Animals; Antiparkinson Agents; Autoradiography; Carbon Isotopes; Cocaine; Disease Models, Animal; Dopamine; Dopamine Uptake Inhibitors; Dyskinesia, Drug-Induced; Female; Functional Laterality; Levodopa; Microdialysis; Motor Activity; Oxidopamine; Parkinson Disease; Positron-Emission Tomography; Protein Binding; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine; Receptors, Serotonin; Serotonergic Neurons; Serotonin Receptor Agonists | 2012 |
D1 and D2 dopamine receptor antagonists decrease behavioral bout duration, without altering the bout's repeated behavioral components, in a naturalistic model of repetitive and compulsive behavior.
Nest building behavior in the pregnant female rabbit (Oryctolagus cuniculus) is a model for compulsive behavior in Obsessive Compulsive Disorder (OCD). This behavior comprises a cycle of repeated, stereotyped components (collecting straw, entering nest box and depositing the straw there, returning to collect more straw), which itself is repeated 80+ times in a single bout that lasts approximately 50min. The bout, in turn, is repeated if necessary, according to the rabbit's perception of whether or not the nest is finished. We administered SCH23390 (5-100μg/kg; D1/D5 antagonist) or raclopride (0.05-1.0mg/kg; D2/D3 antagonist), subcutaneously to day 28 pregnant female rabbits, 30 or 60min before placing straw inside their home cage. At doses that minimally affected ambulatory behavior in open field (5-12.5μg/kg SCH23390, 0.5-1.0mg/kg raclopride), both antagonists dramatically reduced bout duration while not significantly affecting the initiation of straw carrying behavior, the sequential performance of the individual cycle components, maximum cycle frequency, or the total number of bouts performed. These results point to an important role for dopamine neurotransmission for the prolonged expression of a normal, repetitive and compulsive-like behavior. Moreover, the finding that dopamine receptor antagonists decrease the time spent engaged in repetitive behavior (without significantly altering the form of the repetitive behavior itself) suggests a possible explanation for why neuroleptics can be clinically effective for treating OCD. Topics: Animals; Behavior, Animal; Benzazepines; Compulsive Behavior; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Exploratory Behavior; Female; Maternal Behavior; Nesting Behavior; Pregnancy; Rabbits; Raclopride; Statistics, Nonparametric; Time Factors | 2012 |
[18F]desmethoxyfallypride as a novel PET radiotracer for quantitative in vivo dopamine D2/D3 receptor imaging in rat models of neurodegenerative diseases.
[(18)F]desmethoxyfallypride ([(18)F]DMFP) is a promising tracer for longitudinal assessment of striatal dopamine D2/D3-receptor (D2R) availability by positron emission tomography (PET) in small animal models. We explored the feasibility of [(18)F]DMFP-PET to image D2R availability in rat models of Huntington's (HD) and Parkinson's disease (PD).. Animals received either unilateral intrastriatal quinolinic acid lesions or medial forebrain bundle injections of 6-OHDA to produce the loss of striatal projection neurones or deplete the striatal dopamine, corresponding to established animal models for HD and PD, respectively. Three weeks after lesioning, PET scans were acquired on a microPET Focus 120 system following the tail vein injection of [(18)F]DMFP.. [(18)F]DMFP-PET clearly visualized lesion induced decreases and increases of D2R availability. In vivo estimates of D2R binding and changes thereof gained by pharmacokinetic analyses correlated significantly with D2R density and its change provided by in vitro [(3)H]raclopride-autoradiography.. In conclusion, [(18)F]DMFP-PET is a suitable method for in vivo D2R-assessment in preclinical research, e.g for monitoring cell-based therapies. Topics: Animals; Disease Models, Animal; Huntington Disease; Parkinson Disease; Positron-Emission Tomography; Raclopride; Radioactive Tracers; Rats; Receptors, Dopamine D2; Receptors, Dopamine D3; Salicylamides | 2012 |
The role of the dopamine D2 receptor in descending control of pain induced by motor cortex stimulation in the neuropathic rat.
We studied in rats with a spinal nerve ligation-induced neuropathy whether dopamine D2 receptors (D2Rs) play a role in descending control of pain induced by stimulation of the primary motor cortex (M1). Noxious heat-evoked responses were determined in spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons, with and without electrical M1 stimulation. A D2R antagonist, raclopride, was administered into the dorsal striatum or spinally in attempts to reverse spinal antinociception induced by M1 stimulation. Moreover, influence of M1 stimulation on the noxious heat-induced limb withdrawal reflex was determined following block of spinal D2Rs with raclopride or a lidocaine-induced block of the hypothalamic A11 cell group, the main source of spinal dopamine. Striatal administration of raclopride enhanced the heat-evoked baseline responses of WDR but not NS neurons and reversed the M1 stimulation-induced suppression of the heat response in WDR neurons. Following spinal administration of raclopride, M1 stimulation failed to suppress the heat response of WDR neurons, whereas the heat response of NS neurons was enhanced by M1-stimulation. After blocking the A11 with lidocaine or spinal D2Rs with raclopride, M1 stimulation failed to suppress the noxious heat-evoked withdrawal reflex. The results indicate that descending pain control induced by stimulation of the M1 cortex in neuropathic animals involves supraspinal (presumably striatal) and, through A11, spinal D2Rs. Supraspinal and spinal D2Rs have partly dissociative effects on spinal dorsal horn WDR and NS neurons, possibly reflecting differential roles and wirings that these sensory neurons have in pain-processing circuitries. Topics: Analysis of Variance; Animals; Deep Brain Stimulation; Disease Models, Animal; Dopamine Antagonists; Functional Laterality; Hot Temperature; Indoles; Male; Motor Cortex; Motor Neurons; Nociceptors; Pain; Pain Measurement; Peripheral Nervous System Diseases; Piperidines; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Reflex; Spinal Cord | 2012 |
Pathway-specific dopaminergic deficits in a mouse model of Angelman syndrome.
Angelman syndrome (AS) is a neurodevelopmental disorder caused by maternal deletions or mutations of the ubiquitin ligase E3A (UBE3A) allele and characterized by minimal verbal communication, seizures, and disorders of voluntary movement. Previous studies have suggested that abnormal dopamine neurotransmission may underlie some of these deficits, but no effective treatment currently exists for the core features of AS. A clinical trial of levodopa (L-DOPA) in AS is ongoing, although the underlying rationale for this treatment strategy has not yet been thoroughly examined in preclinical models. We found that AS model mice lacking maternal Ube3a (Ube3a(m-/p+) mice) exhibit behavioral deficits that correlated with abnormal dopamine signaling. These deficits were not due to loss of dopaminergic neurons or impaired dopamine synthesis. Unexpectedly, Ube3a(m-/p+) mice exhibited increased dopamine release in the mesolimbic pathway while also exhibiting a decrease in dopamine release in the nigrostriatal pathway, as measured with fast-scan cyclic voltammetry. These findings demonstrate the complex effects of UBE3A loss on dopamine signaling in subcortical motor pathways that may inform ongoing clinical trials of L-DOPA therapy in patients with AS. Topics: Angelman Syndrome; Animals; Benzazepines; Cocaine; Disease Models, Animal; Dopamine; Dopamine D2 Receptor Antagonists; Dopamine Uptake Inhibitors; Dopaminergic Neurons; Electric Stimulation; Female; Indoles; Male; Mice; Mice, Inbred C57BL; Motor Activity; Piperidines; Raclopride; Receptors, Dopamine D1; Reward; Self Stimulation; Substantia Nigra; Synaptic Transmission; Ubiquitin-Protein Ligases; Ventral Tegmental Area | 2012 |
Behavioural and pharmacological examinations in a transgenic mouse model of early-onset torsion dystonia.
Early-onset torsion dystonia is an autosomal dominant movement disorder associated with the DYT1 gene (TOR1A) defect which results in a deletion of a glutamic acid residue in the protein torsinA. The pathophysiology of dystonia is poorly understood. Well characterized animal models can help to give insights into the underlying mechanisms and thereby to develop new therapeutics. In the present study, we further characterized transgenic DYT1 mice, which were initially described to exhibit "dystonia-like" postures. In the present study, several behavioural tests in untreated animals did not show strong differences between transgenic and control mice, but nearly all transgenic mice showed "dystonia-like" postures. However, these movements, also observed in control mice, have to be regarded as a clasping reflex. Since dystonia is thought to be related to dopaminergic dysfunctions, pharmacological investigations have been performed to clarify if dopaminergic substances alter motor behaviour in transgenic mice. Chronic treatment with L-DOPA (combined with carbidopa) enhanced the hindlimb claspings only in transgenic mice, while acute applications of drugs, which exert more selective effects on the dopaminergic system, caused similar reactions in transgenic mice and control mice. Therefore, these data do not provide clear evidence for dysfunctions of the dopaminergic system in this mouse model. Topics: Amphetamines; Animals; Anxiety; Behavior, Animal; Carbidopa; Chromans; Disease Models, Animal; Dystonia; Levodopa; Locomotion; Mice; Mice, Transgenic; Quinpirole; Raclopride | 2011 |
Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol.
A single exposure to psychostimulants or morphine is sufficient to induce persistent locomotor sensitization, as well as neurochemical and electrophysiological changes in rodents. Although it provides a unique model to study the bases of long-term behavioral plasticity, sensitization mechanisms remain poorly understood. We investigated in the mouse, a species suited for transgenic studies, the mechanisms of locomotor sensitization showed by the increased response to a second injection of drug (two-injection protocol of sensitization, TIPS). The first cocaine injection induced a locomotor sensitization that was completely context-dependent, increased during the first week, and persisted 3 months later. The induction of sensitized responses to cocaine required dopamine D1 and glutamate NMDA receptors. A single injection of the selective dopamine transporter blocker GBR12783 was sufficient to activate extracellular signal-regulated kinase (ERK) in the striatum to the same level as cocaine and to induce sensitization to cocaine, but not to itself. The induction of sensitization was sensitive to protein synthesis inhibition by anisomycin after cocaine administration. Morphine induced a pronounced context-dependent sensitization that crossed with cocaine. Sensitization to morphine injection was prevented in knockin mutant mice bearing a Thr-34-Ala mutation of DARPP-32, which suppresses its ability to inhibit protein phosphatase-1 (PP1), but not mutation of Thr-75 or Ser-130. These results combined with previous ones show that TIPS in mouse is a context-dependent response, which involves an increase in extracellular dopamine, stimulation of D1 and NMDA receptors, regulation of the cAMP-dependent and ERK pathways, inhibition of PP1, and protein synthesis. It provides a simple and sensitive paradigm to study the mechanisms of long-term effects of drugs of abuse. Topics: Analysis of Variance; Animals; Anisomycin; Cocaine; Corpus Striatum; Disease Models, Animal; Dizocilpine Maleate; Dopamine Agonists; Dopamine and cAMP-Regulated Phosphoprotein 32; Dopamine Antagonists; Dopamine Uptake Inhibitors; Drug Administration Routes; Drug Administration Schedule; Excitatory Amino Acid Antagonists; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Green Fluorescent Proteins; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Transgenic; Morphine; Motor Activity; Narcotics; Point Mutation; Protein Synthesis Inhibitors; Raclopride; Receptors, Dopamine D1; Substance-Related Disorders; Threonine; Time Factors | 2010 |
Dopamine is involved in the antidepressant-like effect of allopregnanolone in the forced swimming test in female rats.
Evidence from both animal and human studies suggests a role for dopamine in the therapeutic effect of antidepressant drugs. Consistently, dopamine receptor antagonists antagonize the effect of antidepressant drugs in different experimental models of depression. Neurosteroids, and in particular allopregnanolone, seem to be involved both in the pathophysiology of depression and in the mechanism of action of antidepressant drugs, and their role seems to be particularly important in the understanding of mood disturbances related to the different phases of the reproductive life in women. The aim of this study was to investigate the possible role of dopamine on the antidepressant-like effect of allopregnanolone in a model of depression. Thus, we examined (i) the behaviour of female Sprague-Dawley rats in the forced swimming test during estrus and diestrus and their response to allopregnanolone treatment (0.5, 1 and 2 mg/kg), and (ii) the effect of the dopamine D1-like and D2-like receptor antagonists SCH 23390 (0.01 and 0.025 mg/kg) and raclopride (0.05 and 0.2 mg/kg) on the antidepressant-like effect of allopregnanolone (2 mg/kg) in the same experimental model. We failed to observe differences in depressive-like behaviour between estrous phases, and allopregnanolone administration in both estrus and diestrus resulted in an antidepressant-like effect consisting in an increase of swimming behaviour. The allopregnanolone effect was unaffected by a dose of the dopamine D1-like receptor antagonist SCH 23390 displaying a marked inhibitory effect on basal activity, while it was turned into a potentiation of the depressive-like behaviour of the forced swimming condition by treatment with the higher dose of raclopride. The present results indicate an involvement of dopamine transmission in the allopregnanolone antidepressant-like effect in the forced swimming model of depression, and suggest that this effect depends mainly on stimulation of dopamine D2-like receptors. Topics: Animals; Antidepressive Agents; Benzazepines; Depression; Diestrus; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Estrus; Female; Pregnanolone; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Swimming | 2010 |
Contribution of the central dopaminergic system in the anti-hypertensive effect of kinin B1 receptor antagonists in two rat models of hypertension.
Kinins are neuroactive peptides that could play a role in central autonomic control of blood pressure. Whereas kinin B1R binding sites were increased in specific brain areas of spontaneously hypertensive rats (SHR) and Angiotensin II (AngII)-hypertensive rats, the contribution of kinin B1R in hypertension remains controversial. The aims of the study were to determine: (a) the effects on mean arterial blood pressure (MAP) of centrally and peripherally administered B1R antagonists in SHR (16weeks) and AngII-hypertensive rats (200ng/kg/minx2weeks, s.c.); (b) the contribution of central dopamine in the effects of SSR240612. The rationale is based on the overactivity of the dopaminergic system in hypertension. In both models, SSR240612 (1, 5 and 10mg/kg, gavage) reduced dose-dependently MAP (-75mm Hg at least up to 6-8h) and this therapeutic effect was resolved after 24h. At the dose of 5mg/kg, SSR240612-induced anti-hypertension was prevented by two dopamine receptor blockers, namely raclopride (0.16mg/kg, i.v.) and haloperidol (10mg/kg, s.c.). I.c.v. SSR240612 (1mug) decreased rapidly MAP in both models (1-6h) via a raclopride sensitive mechanism. In comparison, peripherally acting B1R antagonists (R-715 and R-954, 2mg/kg, s.c.) caused shorter and very modest decreases of MAP (from -20 to -30mm Hg). Centrally or peripherally administered B1R antagonists had no effect on MAP in control Wistar-Kyoto rats. Data provide the first pharmacological evidence that the up-regulated brain kinin B1R contributes through a central dopaminergic mechanism (DA-D2R) to the maintenance of arterial hypertension in genetic and experimental animal models of hypertension. Topics: Analysis of Variance; Animals; Blood Pressure; Bradykinin B1 Receptor Antagonists; Brain; Disease Models, Animal; Dopamine; Dopamine Antagonists; Dose-Response Relationship, Drug; Haloperidol; Hypertension; Male; Raclopride; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Bradykinin B1 | 2010 |
Multitracer assessment of dopamine function after transplantation of embryonic stem cell-derived neural stem cells in a primate model of Parkinson's disease.
The ability of primate embryonic stem (ES) cells to differentiate into dopamine (DA)-synthesizing neurons has raised hopes of creating novel cell therapies for Parkinson's disease (PD). As the primary purpose of cell transplantation in PD is restoration of dopaminergic neurotransmission in the striatum, in vivo assessment of DA function after grafting is necessary to achieve better therapeutic effects. A chronic model of PD was produced in two cynomolgus monkeys (M-1 and M-2) by systemic administration of neurotoxin. Neural stem cells (NSCs) derived from cynomolgus ES cells were implanted unilaterally in the putamen. To evaluate DA-specific functions, we used multiple [(11)C]-labeled positron emission tomography (PET) tracers, including [beta-(11)C]L-3,4-dihydroxyphenylalanine (L-[beta-(11)C]DOPA, DA precursor ligand), [(11)C]-2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane ([(11)C]beta-CFT, DA transporter ligand) and [(11)C]raclopride (D(2) receptor ligand). At 12 weeks after grafting NSCs, PET demonstrated significantly increased uptake of L-[beta-(11)C]DOPA (M-1:41%, M-2:61%) and [(11)C]beta-CFT (M-1:31%, M-2:36%) uptake in the grafted putamen. In addition, methamphetamine challenge in M-2 induced reduced [(11)C]raclopride binding (16%) in the transplanted putamen, suggesting release of DA. These results show that transplantation of NSCs derived from cynomolgus monkey ES cells can restore DA function in the putamen of a primate model of PD. PET with multitracers is useful for functional studies in developing cell-based therapies against PD. Topics: Animals; Carbon Radioisotopes; Cells, Cultured; Cocaine; Disease Models, Animal; Dopamine; Dopamine Agents; Embryonic Stem Cells; Levodopa; Macaca fascicularis; Methamphetamine; Movement Disorders; Neurons; Parkinson Disease; Positron-Emission Tomography; Putamen; Raclopride; Tyrosine 3-Monooxygenase | 2009 |
In vivo multimodal imaging of stem cell transplantation in a rodent model of Parkinson's disease.
Stem cell therapy in the nervous system aims to replace the lost neurons and provide functional recovery. However, it is imperative that we understand the in vivo behaviour of these cells post-implantation. We report visualisation of iron oxide labelled bone marrow-derived stem cells (BMSCs) implanted into the striatum of hemi-parkinsonian rats by magnetic resonance imaging (MRI). Functional efficacy of the donor cells was monitored in vivo using the positron emission tomography (PET) radioligand [11C]raclopride. The cells were visible for 28 days by in vivo MRI. BMSCs provided functional recovery demonstrated by a decreased binding of [11C]raclopride. Although, histology confirmed the persistence of donor cells, no tyrosine hydroxylase positive cells were present. This suggests that BMSCs may have a limited paracrine effect and influence functional recovery. We demonstrate, using multimodal imaging, that we can not only track BMSCs but also establish their effects in a pre-clinical model of Parkinson's disease. Topics: Adult Stem Cells; Animals; Antipsychotic Agents; Carbon Isotopes; Diagnostic Imaging; Disease Models, Animal; Glial Fibrillary Acidic Protein; Indoles; Magnetic Resonance Imaging; Male; Oxidopamine; Parkinsonian Disorders; Positron-Emission Tomography; Raclopride; Rats; Rats, Sprague-Dawley; Stem Cell Transplantation; Time Factors; Tyrosine 3-Monooxygenase | 2009 |
Ex vivo [11C]-(+)-PHNO binding is unchanged in animal models displaying increased high-affinity states of the D2 receptor in vitro.
Dopamine (DA) D2 receptor supersensitivity has been linked to an increase in the density of the D2 high-affinity state as measured in vitro. The two- affinity-state model of the D2 receptor predicts that the ex vivo specific binding of [11C]-(+)-PHNO, an agonist radiotracer thought to bind selectively to the high-affinity state in vivo, should be increased in animal models that display in vitro increases in the proportion of receptors in the D2 high-affinity state. Here, we test this hypotheses by comparing the ex vivo SBR of [11C]-(+)-PHNO with that of the antagonist radiotracer [3H]-raclopride in three dopaminergically supersensitive rat models-AMPH-sensitized rats, rats withdrawn from chronic ethanol, and unilaterally 6-OHDA-lesioned rats-using ex vivo dual-radiotracer biodistribution studies. We find that in AMPH-sensitized rats and rats withdrawn from chronic ethanol treatment, models that exhibited approximately 4-fold increases in the D2 high-affinity state in vitro, the SBRs of [11C]-(+)-PHNO and [3H]-raclopride are unchanged relative to control rats. In unilaterally 6-OHDA-lesioned rats, we find that the increase in [11C]-(+)-PHNO SBR is no different than that observed for the antagonist radiotracer [3H]-raclopride (54% +/- 16% and 52% +/- 14%, respectively). In addition, the effect of acute AMPH pretreatment (4 mg/kg, i.v.) on the SBRs of [11C]-(+)-PHNO and [3H]-raclopride is equivalent in AMPH-sensitized (-38% +/- 12% and -36% +/- 8%, respectively) and in control rats (-40% +/- 11% and -38% +/- 7%). These data emphasize a significant discrepancy between in vitro and in vivo measures of D2 agonist binding, indicating that the two-affinity-state model of the D2 receptor may not apply veridically to living systems. The potential implications of this discrepancy are discussed. Topics: Animals; Brain; Carbon Radioisotopes; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Male; Positron-Emission Tomography; Raclopride; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2 | 2009 |
Long-term methamphetamine administration in the vervet monkey models aspects of a human exposure: brain neurotoxicity and behavioral profiles.
Methamphetamine (METH)-associated alterations in the human striatal dopamine (DA) system have been identified with positron emission tomography (PET) imaging and post-mortem studies but have not been well correlated with behavioral changes or cumulative METH intake. Animal studies that model some aspects of human long-term METH abuse can establish dose-dependency profiles of both behavioral changes and potential brain neurotoxicities for identifying consequences of particular cumulative exposures. Based on parameters from human and our monkey pharmacokinetic studies, we modeled a prevalent human METH exposure of daily multiple doses in socially housed vervet monkeys. METH doses were escalated over 33 weeks, with final dosages resulting in estimated peak plasma METH concentrations of 1-3 microM, a range measured in human abusers. With larger METH doses, progressive increases in abnormal behavior and decreases in social behavior were observed on 'injection' days. Anxiety increased on 'no injection' days while aggression decreased throughout the study. Thereafter, during 3 weeks abstinence, differences in baseline vs post-METH behaviors were not observed. Post-mortem analysis of METH brains showed 20% lower striatal DA content while autoradiography studies of precommissural striatum showed 35% lower [3H]WIN35428 binding to the DA transporter. No statistically significant changes were detected for [3H]dihydrotetrabenazine binding to the vesicular monoamine transporter (METH-lower by 10%) or for [3H]SCH 23390 and [3H]raclopride binding to DA D1 and D2 receptors, respectively. Collectively, this long-term, escalating dose METH exposure modeling a human abuse pattern, not associated with high-dose binges, resulted in dose-dependent behavioral effects and caused persistent changes in presynaptic striatal DA system integrity. Topics: Analysis of Variance; Animals; Autoradiography; Behavior, Animal; Benzazepines; Brain; Brain Chemistry; Central Nervous System Stimulants; Chlorocebus aethiops; Cocaine; Disease Models, Animal; Dopamine Antagonists; Dopamine Plasma Membrane Transport Proteins; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Male; Methamphetamine; Neurotoxicity Syndromes; Protein Binding; Raclopride; Social Behavior; Tritium | 2008 |
Food restriction markedly increases dopamine D2 receptor (D2R) in a rat model of obesity as assessed with in-vivo muPET imaging ([11C] raclopride) and in-vitro ([3H] spiperone) autoradiography.
Dopamine (DA) regulates food intake by modulating food reward and motivation but its involvement in obesity is much less understood. Recent evidence points to the involvement of leptin in the DA-related modulation of food intake. Here we assess DA D2 receptors (D2R) in a genetic rodent obesity model characterized by leptin-receptor deficiency and assess the influence of food restriction on these receptors.. We compared D2R levels between Zucker Obese (fa/fa) and Lean (Fa/Fa) rats at 1 and 4 months of age and in two different feeding conditions (restricted and unrestricted food access) using in-vivo muPET imaging ([11C] raclopride, which is a method sensitive to competition with endogenous DA) and in-vitro ([3H] spiperone washed to ensure no competition with endogenous DA) autoradiography (ARG).. Both ARG and muPET showed that D2R were higher at 1 month than at 4 months of age and that food restricted animals had higher D2R than unrestricted animals. However there were significant differences in the results obtained at 4 months between ARG and muPET. ARG showed that at 1 month and at 4 months unrestricted lean rats (Le U) had significantly higher D2R binding than obese unrestricted rats (Ob U) but showed no differences between restricted obese (Ob R) and restricted lean rats (Le R). It also showed that D2R decline between 1 and 4 months of age was significantly attenuated in food restricted rats [both obese and lean]. In contrast, muPET showed that at 4 months of age, Ob U showed greater D2R availability than Le U rats but like ARG showed no differences between Ob R and Le R rats.. The lower D2R binding in Ob U than Le U rats observed with ARG most likely reflects decreases in striatal D2 receptors levels whereas the increased availability observed with muPET is likely to reflect reduced DA release (resulting in decreased competition with endogenous DA). Lack of a significant difference between Ob R and Le R suggests that the differences in dopamine activity and D2R levels between Ob and Le Zucker rats are modulated by access to food. The ARG finding of an attenuation of the age-related loss of D2R binding corroborates previous studies of the salutary effects of food restriction in the aging process. Because [11C] raclopride is sensitive to competition with endogenous DA, the higher D2R binding in obese rats with raclopride despite the lower D2R levels shown with spiperone could reflect lower extracellular DA in the Ob rats and merits further investigation. Topics: Age Factors; Animals; Apomorphine; Appetite Regulation; Autoradiography; Brain; Disease Models, Animal; Dopamine; Dopamine Agonists; Eating; Food Deprivation; In Vitro Techniques; Male; Motor Activity; Obesity; Positron-Emission Tomography; Raclopride; Rats; Rats, Zucker; Receptors, Dopamine D2; Receptors, Leptin; Spiperone; Tritium | 2008 |
VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease.
We used positron emission tomography (PET) to measure the earliest change in dopaminergic synapses and glial cell markers in a chronic, low-dose MPTP non-human primate model of Parkinson's disease (PD). In vivo levels of dopamine transporters (DAT), vesicular monoamine transporter-type 2 (VMAT2), amphetamine-induced dopamine release (AMPH-DAR), D2-dopamine receptors (D2R) and translocator protein 18 kDa (TSPO) were measured longitudinally in the striatum of MPTP-treated animals. We report an early (2 months) decrease (46%) of striatal VMAT2 in asymptomatic MPTP animals that preceded changes in DAT, D2R, and AMPH-DAR and was associated with increased TSPO levels indicative of a glial response. Subsequent PET studies showed progressive loss of all pre-synaptic dopamine markers in the striatum with expression of parkinsonism. However, glial cell activation did not track disease progression. These findings indicate that decreased VMAT2 is a key pathogenic event that precedes nigrostriatal dopamine neuron degeneration. The loss of VMAT2 may result from an association with alpha-synuclein aggregation induced by oxidative stress. Disruption of dopamine sequestration by reducing VMAT2 is an early pathogenic event in the dopamine neuron degeneration that occurs in the MPTP non-human primate model of PD. Genetic or environmental factors that decrease VMAT2 function may be important determinants of PD. Topics: Animals; Autoradiography; Brain; Carbon Isotopes; Carrier Proteins; Cocaine; Disease Models, Animal; Dopamine; Dopamine Antagonists; Dopamine Uptake Inhibitors; Glial Fibrillary Acidic Protein; Isoquinolines; Male; Neurons; Papio anubis; Parkinsonian Disorders; Positron-Emission Tomography; Raclopride; Tetrabenazine; Tyrosine 3-Monooxygenase; Vesicular Monoamine Transport Proteins | 2008 |
Dopamine D2-like receptor in the nucleus accumbens is involved in the antinociceptive effect of nitrous oxide.
The mechanism of the antinociceptive effects of nitrous oxide (N(2)O) has not been completely elucidated. On the other hand, numerous studies have indicated that mesolimbic dopaminergic neurons, which are thought to be involved in rewarding and reinforcement processes, play important roles in the supraspinal pain-suppression system. We hypothesized that the mesolimbic dopaminergic system is involved in the antinociceptive effect of N(2)O.. Adult male Fischer rats were used in this study. To examine whether the dopaminergic system is activated by N(2)O, frozen sections of the ventral tegmental area of rats exposed to 75% N(2)O were double-stained for c-Fos and tyrosine hydroxylase. To clarify whether the dopaminergic system is involved in the antinociceptive action of N(2)O, saline or raclopride, a dopamine D(2)-like receptor antagonist, was injected into the nucleus accumbens (NAc) shell region. After exposure to 25% oxygen-75% nitrogen or 25% oxygen-75% N(2)O for 30 min, rats were subjected to formalin test, and the spinal cord was examined immunohistochemically.. Exposure to 75% N(2)O increased c-Fos expression in tyrosine hydroxylase-positive cells in the ventral tegmental area. Raclopride, injected into the NAc shell region, attenuated the antinociceptive effect of N(2)O in the formalin test, and blocked the suppressive effect of N(2)O on the formalin-induced c-Fos expression in the dorsal horn of the spinal cord by N(2)O.. It is possible that inhalation of N(2)O activates mesolimbic dopaminergic neurons, and that the antinociceptive effect of N(2)O is at least partially mediated by dopamine D(2)-like receptors in the NAc shell region. Topics: Analgesics; Animals; Behavior, Animal; Disease Models, Animal; Dopamine Antagonists; Formaldehyde; Male; Microinjections; Nitrous Oxide; Nucleus Accumbens; Pain; Pain Measurement; Proto-Oncogene Proteins c-fos; Raclopride; Rats; Rats, Inbred F344; Receptors, Dopamine D2; Time Factors; Tyrosine 3-Monooxygenase; Up-Regulation; Ventral Tegmental Area | 2008 |
Progressive changes of pre- and post-synaptic dopaminergic biomarkers in conscious MPTP-treated cynomolgus monkeys measured by positron emission tomography.
Positron emission tomography (PET) is a useful technique for the consecutive investigation of the relationship between changes in neurotransmission biomarkers and behavioral signs in animal models of Parkinson's disease (PD). In this study, we aimed to investigate the threshold of dopamine (DA) neuron damage for the appearance of tremor by observing the longitudinal changes of pre- and post-synaptic DA biomarkers in awake monkeys using PET with multiple tracers. Three cynomolgus monkeys were treated with MPTP every 3-6 weeks until tremor was observed. Brain uptake of [11C]PE2I, [beta-11C]DOPA, and [11C]raclopride for DA transporter (DAT), DOPA utilization, and DA D2 receptor were measured using PET as a single set in awake condition. Sets of PET scans were repeated in parallel with continuous behavioral estimation. The pre-synaptic biomarkers of DA neuron in the striatum decreased [11C]PE2I binding and [beta-11C]DOPA uptake in an MPTP dose-dependent manner. Tremor was not observed until striatal [11C]PE2I binding was reduced to about 15% of the pretreatment level and [beta-11C]DOPA uptake was reduced to about 34%. DA D2 receptor measured by [11C]raclopride was not significantly changed throughout the experiment. Our results revealed that it is possible to quantitatively define the threshold of the onset of behavioral PD signs by monitoring spontaneous motor activity, and in vivo PET with DAT marker can be a biomarker for early diagnosis at the presymptomatic stage of PD and for high-risk groups. Topics: Analysis of Variance; Animals; Behavior, Animal; Brain; Dihydroxyphenylalanine; Disease Models, Animal; Dopamine; Dopamine Agents; Macaca fascicularis; Male; MPTP Poisoning; Neurons; Nortropanes; Positron-Emission Tomography; Raclopride; Radioisotopes; Wakefulness | 2007 |
Continuous but not intermittent olanzapine infusion induces vacuous chewing movements in rats.
Continuous, but not intermittent, infusion with a conventional antipsychotic (haloperidol, HAL) can induce the vacuous chewing movement (VCM) syndrome in rats. The objective of this study was to determine whether continuous, versus intermittent, olanzapine (OLZ) infusion differently affects the development of VCMs.. Experiment 1: Animals were treated with 7.5 mg/kg/day of OLZ or vehicle (VEH) via either minipump (MP) or daily subcutaneous (SC) injections for 8 weeks. Experiment 2: A separate group of rats were treated with 15 mg/kg/day of OLZ, or 1 mg/kg/day of HAL or VEH via MP for 8 weeks. Dopamine D2 receptor occupancy levels were measured, ex vivo, with [3H]-raclopride.. Experiment 1: Rats receiving 7.5 mg/kg/day of OLZ via MP (51% D2 occupancy), but not those receiving the same dose via daily SC injections (94% peak D2 occupancy), showed significant VCM levels compared with control animals (p = .02). Experiment 2: Both OLZ (67% D2 occupancy) and HAL (79% D2 occupancy) led to similar increases in VCMs compared with VEH (p = .005).. This study provides strong evidence that even an atypical antipsychotic like OLZ, which rarely gives rise to tardive dyskinesia in the clinic, can lead to the VCM syndrome in rats if the antipsychotic is administered in a method (via MP) that leads to continuous presence of the drug in the brain. Topics: Analysis of Variance; Animals; Behavior, Animal; Benzodiazepines; Disease Models, Animal; Dopamine Antagonists; Drug Administration Routes; Dyskinesia, Drug-Induced; Haloperidol; Infusion Pumps; Male; Mastication; Olanzapine; Raclopride; Radioligand Assay; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Selective Serotonin Reuptake Inhibitors; Time Factors; Tritium | 2005 |
Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington's disease.
To investigate efficacy of cystamine induced neuroprotection, we conducted PET imaging studies of cerebral glucose metabolism with [(18)F]FDG (2-deoxy-2-[(18)F]fluoro-d-glucose) and striatal dopamine D2 receptor function with [(11)C]raclopride in R6/2 transgenic Huntington mice. In the control mice, exponentially decreasing glucose utilization was observed in the striatum N(str) [SUV]=(41.75+/-11.80)(58,str)*exp(-(0.041+/-0.007)*t [days]); cortex N(cort) [SUV]=24.14+/-3.66)(58,cort)*exp(-(0.043+/-0.007)*t [days]); and cerebellum N(cer) [SUV]=(34.97+/-10.58)(58,cer)*exp(-(0.037+/-0.008)*t [days]) as a function of age starting at 58 days. Given that the underlying degeneration rate in the cystamine treated mice is similar to that observed in control animals, the protection coefficient (beta) calculated from the equation N(t)=N(58)*exp(-(1-beta)*k*t) was 0.133+/-0.035 for the striatum; 0.122+/-0.028 for the cortex and 0.224+/-00.042 for the cerebellum with a dose of 100 mg/kg. The 50 mg/kg cystamine dose provided significant protection only for the striatum and only minor protection was obtained using lower doses. Striatal binding potential of [(11)C]raclopride was 1.059+/-0.030 in the control mice, and enhanced in the cystamine treated animals in a dose dependent manner up to 1.245+/-0.063 using the 100 mg/kg dose. Histological analysis confirmed cystamine induced neuroprotection of striatal and cortical neurons and Nissl staining revealed that formation of cellular inclusions was reversed in a dose dependent manner. Cerebral imaging and histological evidence support the use of cystamine as a neuroprotective agent for Huntington's disease (HD) pathology. Topics: Age Factors; Animals; Binding, Competitive; Body Weight; Brain; Brain Chemistry; Brain Mapping; Cerebral Cortex; Cystamine; Disease Models, Animal; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Fluorodeoxyglucose F18; Glucose; Huntington Disease; Image Processing, Computer-Assisted; Inclusion Bodies; Male; Mice; Mice, Transgenic; Motor Activity; Neuroprotective Agents; Peptides; Positron-Emission Tomography; Raclopride; Transglutaminases; Tritium | 2005 |
Combined alpha2 and D2/3 receptor blockade enhances cortical glutamatergic transmission and reverses cognitive impairment in the rat.
The alpha(2) adrenoceptor antagonist idazoxan enhances antipsychotic efficacy of classical dopamine D(2) antagonists in treatment-resistant schizophrenia. The mechanisms are not fully understood, but we have previously shown that the combination of idazoxan with the D(2/3) receptor antagonist raclopride, similarly to clozapine but not classical antipsychotic drugs, augments dopamine efflux in the prefrontal cortex, and also generates an enhanced suppression of the conditioned avoidance response. We have now investigated the effects of clozapine, raclopride, idazoxan and the combination of raclopride and idazoxan on (i) electrically evoked excitatory post-synaptic potentials and currents in pyramidal cells of the rat medial prefrontal cortex, using intracellular electrophysiological recording in vitro, (ii) the impaired cognitive function induced by the selective N-methyl-D-aspartate (NMDA) receptor antagonist MK-801, using the 8-arm radial maze test, (iii) the in-vivo D2, alpha(2A) and alpha(2C) receptor occupancies of these pharmacological treatments, using ex-vivo autoradiography. Whereas neither idazoxan nor raclopride alone had any effect, the combination exerted the same facilitation of glutamatergic transmission in rat prefrontal pyramidal neurons as clozapine, and this effect was found to be mediated by dopamine acting at D(1) receptors. Similarly to clozapine, the combination of idazoxan and raclopride also completely reversed the working-memory impairment in rats induced by MK-801. Moreover, these effects of the two treatment regimes were obtained at similar occupancies at D(2), alpha(2A) and alpha(2C) receptors respectively. Our results provide novel neurobiological and behavioural support for a pro-cognitive effect of adjunctive use of idazoxan with antipsychotic drugs that lack appreciable alpha(2) adrenoceptor-blocking properties, and define presynaptic alpha(2) adrenoceptors as major targets in antipsychotic drug development. Topics: Adrenergic alpha-Antagonists; Animals; Behavior, Animal; Cerebral Cortex; Clozapine; Cognition Disorders; Disease Models, Animal; Dizocilpine Maleate; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Idazoxan; In Vitro Techniques; Male; Maze Learning; Raclopride; Radioligand Assay; Rats; Rats, Sprague-Dawley; Rats, Wistar; Synaptic Transmission | 2005 |
Stimulation of adenosine A2A receptors elicits zif/268 and NMDA epsilon2 subunit mRNA expression in cortex and striatum of the "weaver" mutant mouse, a genetic model of nigrostriatal dopamine deficiency.
Interaction between basal ganglia and cerebral cortex is critical for normal goal-directed behavior. In the present study we have used the immediate early gene zif/268, as functional marker to investigate how the stimulation of adenosine A2A receptors, i.e. of the "indirect" striatal output pathway, affects striatal and cortical function in "weaver" mouse, a genetic model of dopamine deficiency. Furthermore, we have examined the effect of A2A receptor stimulation on glutamate receptor expression in the "weaver" brain. A single injection of CGS21680 (A2A receptor agonist), induced strong expression of zif/268 mRNA, detected by in situ hybridization, not only in striatum but also in the motor cortex of the "weaver" mutant. This cortical response seems to be elicited through the basal-ganglia-thalamo-cortical circuit, rather than through a direct cortical effect, since A2A receptors are not detectable in cortex according to our autoradiographic study. Co-administration of CGS21680 and quinpirole (D2 receptor agonist) attenuated the expression of zif/268 mRNA in dorsal striatum but not in motor cortex, indicating that the cortical response is dopamine-D2-receptor-independent. However, this co-administration induced an increase in zif/268 mRNA expression in somatosensory cortex, which could rely on disinhibition of the thalamo-cortical pathway. The motor cortical response could be of clinical interest, as it would further stimulate the "indirect" striatal pathway in a feed forward circuit, thus worsening the parkinsonian symptoms. Furthermore, the up-regulation of epsilon2 subunit mRNA of the NMDA receptor, induced by CGS21680 administration, seen in striatum and cortex of the "weaver" mouse, would lead to overactivity of these receptors worsening dyskinesias. These results suggest adenosine to play a significant role in regulating striatal and cortical neurochemistry in a dopamine-depleted mouse. Blockade of these receptors by specific A2A antagonists could ameliorate parkinsonian symptoms. Topics: Adenosine; Adenosine A2 Receptor Antagonists; Animals; Autoradiography; Binding Sites; Cell Count; Cerebral Cortex; Corpus Striatum; Disease Models, Animal; DNA-Binding Proteins; Dopamine; Dopamine Agonists; Dopamine Antagonists; Early Growth Response Protein 1; Gene Expression; Immediate-Early Proteins; In Situ Hybridization; Mice; Mice, Neurologic Mutants; Phenethylamines; Protein Subunits; Quinpirole; Raclopride; Receptor, Adenosine A2B; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; RNA, Messenger; Staining and Labeling; Transcription Factors | 2004 |
PET imaging of implanted human retinal pigment epithelial cells in the MPTP-induced primate model of Parkinson's disease.
Human retinal pigment epithelial (hRPE) cells produce L-dopa, are easily harvested and expanded in culture, and, attached to microcarriers, can survive in the brain without immunosuppression. Studies in rats, primates, and parkinsonian patients have demonstrated that striatally implanted hRPE cells attached to gelatin microcarriers (RPE-GM) are able to improve parkinsonian symptoms and are well tolerated for extended periods. In moderately to severely impaired monkeys with bilateral 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP)-induced parkinsonism receiving a unilateral RPE-GM implant in the putamen, there was a 39% improvement in clinical scores over the first 2 months post-implant. Positron emission tomography (PET) with [18F]fluoro-L-dopa (FDOPA) showed increased accumulation in the implanted putamen and a concomitant decrease in [11C]raclopride binding in the same area, suggesting increased dopamine release compared to the contralateral putamen. We report the first in vivo visualization of hRPE cells and their effects, implicating a dopaminergic mechanism of action. Topics: Animals; Binding, Competitive; Dihydroxyphenylalanine; Disease Models, Animal; Dopamine; Female; Humans; Macaca fascicularis; Macaca mulatta; Male; Parkinsonian Disorders; Pigment Epithelium of Eye; Putamen; Raclopride; Radioligand Assay; Recovery of Function; Tomography, Emission-Computed; Treatment Outcome; Up-Regulation | 2004 |
Differential sensitivity to acute administration of Ritalin, apomorphine, SCH 23390, but not raclopride in mice selectively bred for hyperactive wheel-running behavior.
Previous studies of mice ( Mus domesticus) selectively bred for high voluntary wheel running have suggested that the hyperactivity is associated with dysfunction in the dopaminergic neuromodulatory system and that high-running mice may represent a useful genetic model for attention deficit hyperactivity disorder (ADHD).. We tested the hypothesis that mice from the four replicate hyperactive lines would respond differently to methylphenidate (Ritalin), apomorphine (non-selective dopamine agonist), SCH 23390 (selective D1-like dopamine antagonist), and raclopride (selective D2-like dopamine antagonist) than individuals from the four replicate, randomly bred, control lines.. After animals were habituated (3 weeks) to their cages with attached wheels, drugs were administered via intraperitoneal injections, at night, during peak wheel-running activity. Revolutions on wheels 10-70 min post-injection were used to quantify drug responses.. Ritalin (15 mg/kg and 30 mg/kg) increased wheel running in control lines but decreased running in selected lines. A low-dose (0.125 mg/kg) of apomorphine reduced wheel running by a similar amount in control and selected lines; however, higher doses of apomorphine (0.25 mg/kg and 0.5 mg/kg) produced greater reductions in wheel running in the control lines. SCH 23390 (0.025, 0.05, and 0.1 mg/kg) caused greater reductions in wheel running in control than in selected lines. Raclopride (0.5, 1, and 2 mg/kg) reduced wheel running by a similar amount in control and selected lines.. These results support the interpretation that genetically determined hyperactive wheel-running behavior is associated with altered dopaminergic function in this mouse model. More specifically, results suggest that D1-like (D1 or D5), but not D2-like (D2, D3, or D4), dopamine receptors have reduced function in the high-running mice. The fact that Ritalin decreased wheel running in selected lines further supports their use as an animal model of ADHD. Topics: Animals; Animals, Outbred Strains; Apomorphine; Benzazepines; Breeding; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Female; Hyperkinesis; Male; Methylphenidate; Mice; Motor Activity; Raclopride; Selection, Genetic; Species Specificity; Time Factors | 2003 |
Effects of levodopa on endocannabinoid levels in rat basal ganglia: implications for the treatment of levodopa-induced dyskinesias.
The majority of Parkinson's disease patients undergoing levodopa therapy develop disabling motor complications (dyskinesias) within 10 years of treatment. Stimulation of cannabinoid receptors, the pharmacological target of Delta 9-tetrahydrocannabinol, is emerging as a promising therapy to alleviate levodopa-associated dyskinesias. However, the mechanisms underlying this beneficial action remain elusive, as do the effects exerted by levodopa therapy on the endocannabinoid system. Although levodopa is known to cause changes in CB1 receptor expression in animal models of Parkinson's disease, we have no information on whether this drug alters the brain concentrations of the endocannabinoids anandamide and 2-arachidonylglycerol. To address this question, we used an isotope dilution assay to measure endocannabinoid levels in the caudate-putamen, globus pallidus and substantia nigra of intact and unilaterally 6-OHDA-lesioned rats undergoing acute or chronic treatment with levodopa (50 mg/kg). In intact animals, systemic administration of levodopa increased anandamide concentrations throughout the basal ganglia via activation of dopamine D1/D2 receptors. In 6-OHDA-lesioned rats, anandamide levels were significantly reduced in the caudate-putamen ipsilateral to the lesion; however, neither acute nor chronic levodopa treatment affected endocannabinoid levels in these animals. In lesioned rats, chronic levodopa produced increasingly severe oro-lingual involuntary movements which were attenuated by the cannabinoid agonist R(+)-WIN55,212-2 (1 mg/kg). This effect was reversed by the CB1 receptor antagonist rimonabant (SR141716A). These results indicate that a deficiency in endocannabinoid transmission may contribute to levodopa-induced dyskinesias and that these complications may be alleviated by activation of CB1 receptors. Topics: Animals; Antiparkinson Agents; Basal Ganglia; Behavior, Animal; Benzazepines; Benzoxazines; Brain Chemistry; Cannabinoid Receptor Modulators; Chromatography, High Pressure Liquid; Disease Models, Animal; Dopamine Antagonists; Drug Interactions; Dyskinesia, Drug-Induced; Dyskinesias; Endocannabinoids; Gas Chromatography-Mass Spectrometry; Levodopa; Male; Morpholines; Mouth; Naphthalenes; Oxidopamine; Parkinson Disease; Piperidines; Pyrazoles; Raclopride; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Rimonabant; Substantia Nigra; Time Factors | 2003 |
Amphetamine-sensitized animals show a sensorimotor gating and neurochemical abnormality similar to that of schizophrenia.
The aim of these studies was to examine whether amphetamine-induced sensitization in rats could be used as an animal model to study the basis of certain abnormalities seen in schizophrenia. Specifically, these experiments examined whether rats subjected to a sensitizing regimen of amphetamine would show the sensorimotor gating and greater amphetamine-induced displacement of radio-raclopride binding deficit that is observed in schizophrenia. In the first experiment, animals were divided into two groups with each rat receiving an intraperitoneal injection of amphetamine (AMPH) or saline (SAL) (1 ml/kg) three times per week for 3 weeks for a total of nine injections. AMPH dose was increased weekly from 1 mg/kg in the first week to 3 mg/kg in the third. Twenty-two days after the last injection, prepulse inhibition (PPI) of the acoustic startle response was tested. In addition, rats were tested for the effects of a challenge dose of 0.5 mg/kg AMPH on locomotor activity and [3H]raclopride (RAC) binding potential (BP) in the striatum. The tests for PPI confirmed that sensorimotor gating was disrupted in the AMPH-induced sensitized-state rats at baseline. The AMPH-sensitized rats also exhibited higher locomotor response to AMPH and a lower binding of striatal [3H]raclopride when challenged with the drug. The results were replicated and even more pronounced in rats that were treated with AMPH for 5 weeks, with doses ranging from 1mg/kg in the first week to 5 mg/kg in the fifth. These sensorimotor gating deficits and neurochemical (greater AMPH-induced displacement of radio-raclopride binding) abnormalities show similarities with the pathophysiology of schizophrenia and suggest that the AMPH-sensitized-state rats could be used to model certain aspects of schizophrenia. Topics: Acoustic Stimulation; Amphetamine; Animals; Corpus Striatum; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Schedule; Male; Motor Activity; Neural Inhibition; Raclopride; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D2; Reflex, Startle; Schizophrenia; Sensory Thresholds | 2003 |
Dopamine D(1) and D(2) receptors in the forebrain of dystonia musculorum mutant mice: an autoradiographic survey in relation to dopamine contents.
Dystonia musculorum (dt(J)/dt(J)) mutant mice suffer from a degeneration of spinocerebellar tracts as well as a dystrophy of peripheral sensory tracts. This neurological mutant has been proposed as an animal model of human cerebellar ataxia, in particular of the Friedreich's type; thus, it was deemed of interest to examine the endogenous contents of dopamine (DA) and metabolites as well as the distribution of DA receptors of the D(1) and D(2) subtypes, in order to delimit the biochemical characteristics of this pathological disorder, and determine an eventual dopaminergic dysfunction in this mutant. Tissue DA and its major metabolites 3, 4-dihydroxyphenylacetic acid, homovanillic acid and 3-methoxytyramine were measured by HPLC coupled to electrochemical detection in six cortical regions, in four divisions of rostral neostriatum and two halves of caudal neostriatum, as well as in olfactory bulb, nucleus accumbens, septum, amygdala, hippocampus, thalamus, hypothalamus, brainstem, cerebellum, substantia nigra, and ventral tegmental area. The only significant difference between dt(J)/dt(J) mice and wild-type controls was an increase in hypothalamic DA contents (+47%). Quantitative autoradiography with [(3)H]SCH23390 and [(3)H]raclopride, to label D(1) and D(2) receptors, respectively, revealed only moderate changes in receptor densities in a few localized regions. In dt(J)/dt(J) mutants, D(1) receptor numbers were found to be higher in thalamus (+27%) as well as in the medio-dorsal (+16%) and in the latero-dorsal (+16%) quadrants of rostral neostriatum, while D(2) receptor densities were greater in the medio-ventral (+32%) and the latero-dorsal (+17%) quadrants. The present results indicate an overall conservation of dopaminergic functions, albeit the few localized sites of increased D(1) and D(2) receptor densities, and that are seemingly independent of the DA innervation pattern, as revealed by the tissue measurements of DA and metabolites. They also rule out a major pathology linked to deficits in DA neurotransmission, and validate this mutant as an animal model of human cerebellar ataxia, probably of the Friedreich type. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Autoradiography; Benzazepines; Cerebellar Ataxia; Disease Models, Animal; Dopamine; Dopamine Antagonists; Dystonia Musculorum Deformans; Homovanillic Acid; Ligands; Male; Mice; Mice, Neurologic Mutants; Neostriatum; Raclopride; Radioligand Assay; Receptors, Dopamine D1; Receptors, Dopamine D2; Tritium | 2000 |
Effects of oligonucleotide antisense to dopamine D(1A) receptor messenger RNA in a rodent model of levodopa-induced dyskinesia.
Dyskinesias are abnormal involuntary movements which develop as a side-effect of long-term treatment with levodopa in patients with Parkinson's disease. The pathophysiology underlying these dyskinesias remains unclear, although, it has been suggested that heightened activity of dopamine D(1) receptor-bearing striatonigral neurons may play a key role. Chronic pulsatile levodopa administration to hemiparkinsonian rats results in sensitization of rotational responses to apomorphine. This sensitization is thought to be analogous to levodopa-induced dyskinesias in humans. In these studies, we further clarify the role of the dopamine D(1A) receptor in this rodent model of levodopa-induced dyskinesias using an in vivo oligonucleotide antisense approach. Hemiparkinsonian rats received twice daily injections of levodopa for three weeks followed by intrastriatal infusion of dopamine D(1A) receptor antisense (7nmol/day, three days), a scrambled missense control sequence, or saline. Those animals treated with antisense displayed significantly fewer apomorphine-induced rotations than saline- or missense-treated controls.By reducing dopamine D(1A) receptor expression, we were able to attenuate sensitization of the response to apomorphine resulting from chronic pulsatile levodopa treatment. Thus, the dopamine D(1A) receptor appears to play a significant role in levodopa-induced dyskinesias and warrants further examination. These findings may have important implications for the development of selective treatment strategies designed to alleviate parkinsonian symptoms, while minimizing motor complications. Topics: Animals; Antiparkinson Agents; Apomorphine; Autoradiography; Behavior, Animal; Cocaine; Denervation; Disease Models, Animal; Dopamine Antagonists; Dopamine Uptake Inhibitors; Dyskinesia, Drug-Induced; Gene Expression; Levodopa; Male; Oligonucleotides, Antisense; Oxidopamine; Phenotype; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Dopamine D2; RNA, Messenger; Rotation; Substantia Nigra; Sympatholytics; Tritium | 2000 |
L-DOPA produces strong induction of c-fos messenger RNA in dopamine-denervated cortical and striatal areas of the common marmoset.
Common marmosets (Callithrix jacchus) with near-complete unilateral 6-hydroxydopamine denervation of the dopaminergic input received a single injection of saline or L-DOPA (15mg/kg plus 6.25mg/kg benserazide). Using in situ hybridization, the effects of these treatments on c-fos messenger RNA expression in the cerebral cortex, the striatal complex and the external layer of the pallidum were studied. Moreover, receptor autoradiography was used to determine the levels of dopamine D(1) and D(2) receptors in these areas. In the cerebral cortex, animals treated with L-DOPA displayed a high expression of c-fos messenger RNA restricted to the dopamine-denervated hemisphere. No changes in the levels of cortical D(1) and D(2) receptors were found in the dopamine-denervated hemisphere. L-DOPA treatment also induced a strong expression of c-fos messenger RNA in the striatal complex in the dopamine-denervated hemisphere. The levels of striatal D(2), but not D(1), receptors were increased in the dopamine-denervated hemisphere. In the external pallidum, the major terminal region for D(2) dopamine receptor-containing striatal projection neurons, L-DOPA treatment induced c-fos messenger RNA expression in both the intact and the dopamine-denervated hemispheres.Thus, using c-fos messenger RNA as a biochemical marker of postsynaptic neuronal activation, these results provide evidence that near-complete dopamine depletion causes a profound supersensitization to L-DOPA treatment in the cerebral cortex and in the striatal complex, but not in the external layer of the pallidum, of the primate brain. The cortical response may be unique to the primate brain, but c-fos messenger RNA activation within the striatum has also been reported in the rodent. The effects of L-DOPA probably depend both on a direct activation of supersensitized dopamine receptors by dopamine produced in the few remaining, but hyperactive, dopaminergic nerve terminals and in serotonergic nerve terminals, as well as on indirect actions of L-DOPA related to activation of circuitries connecting cerebral cortex and basal ganglia structures. These results provide novel information on the mechanisms underlying L-DOPA's action in the cerebral cortex, striatum and external pallidum in a primate model of Parkinson's disease. Topics: Animals; Benzazepines; Blotting, Western; Callithrix; Cerebral Cortex; Corpus Striatum; Denervation; Disease Models, Animal; Dopamine; Dopamine Agents; Dopamine Antagonists; Enkephalins; Gene Expression; Genes, Immediate-Early; Levodopa; Nerve Degeneration; Oxidopamine; Parkinson Disease; Protein Precursors; Proto-Oncogene Proteins c-fos; Raclopride; Radioligand Assay; Receptors, Dopamine D1; Receptors, Dopamine D2; RNA, Messenger; Substance P; Substantia Nigra; Sympatholytics; Tritium | 2000 |
Dopamine D(1A) receptor function in a rodent model of tardive dyskinesia.
Tardive dyskinesia develops as a common complication of long-term neuroleptic use. The emergence of such dyskinesias may reflect a shift in the balance of dopamine D(1) and D(2) receptor-mediated activity, with a relative increase in activity in the D(1) receptor-regulated direct striatonigral pathway. In rats, chronic treatment with the antipsychotic fluphenazine triggers a syndrome of vacuous chewing movements, which are attenuated by dopamine D(1) receptor antagonists. A similar syndrome can be seen in drug-naive animals following acute administration of selective dopamine D(1) receptor agonists. However, not all dopamine D(1) receptor agonists elicit these mouth movements. Thus, some investigators have suggested the existence of novel subtypes of the dopamine D(1) receptor. In these studies, we sought to clarify the role of the dopamine D(1A) receptor in vacuous chewing movements induced both by the selective dopamine D(1) receptor agonist SKF 38393, as well as by chronic neuroleptic administration, using in vivo oligonucleotide antisense to dopamine D(1A) receptor messenger RNA. Intrastriatal antisense treatment significantly and selectively attenuated striatal dopamine D(1) receptor binding, accompanied by reductions in SKF 38393- and chronic fluphenazine-induced vacuous chewing movements. These findings suggest that the dopamine D(1A) receptor plays an important role in the expression of vacuous chewing movements in a rodent model of tardive dyskinesia and may contribute to the pathogenesis of the human disorder. This may have important implications for the treatment of tardive dyskinesia in humans. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Antipsychotic Agents; Behavior, Animal; Binding Sites; Disease Models, Animal; Dopamine Agonists; Dyskinesia, Drug-Induced; Fluphenazine; Male; Mastication; Neostriatum; Neurons; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Dopamine D2; RNA, Messenger; Tritium | 2000 |
Effects of acute or chronic administration of substituted benzamides in experimental models of depression in rats.
The effects of substituted benzamides, sulpiride and raclopride on experimental models of depression were studied in male rats after acute or chronic administration in comparison to those of the classical antidepressant, clomipramine. In contrast to clomipramine (50 mg/kg), acute doses of sulpiride or raclopride (1 or 5 mg/kg) failed to change the behavioral response of animals tested in the despair (constrained swim) test or in the model of reserpine-induced changes in the open field behavior. These doses also did not modify the grooming response of rats exposed to a novel environment. Sulpiride or raclopride 10 mg/kg increased the immobility time in the despair test and reduced novelty-induced grooming. The repeated injection for 21 days of sulpiride or raclopride (1 or 5 mg/kg, but not 10 mg/kg) induced a reduction of the immobility period during the constrained swim test similar to that following the chronic treatment with clomipramine 50 mg/kg. This appeared to be a clear-cut reversed dose-response relationship for both substituted benzamides, being the dose potency 1 mg/kg>5 mg/kg>10 mg/kg. Raclopride was more potent than sulpiride in this respect. Furthermore, like clomipramine, sulpiride (1 or 5 mg/kg) and raclopride (1 mg/kg) antagonized reserpine-induced changes in the open field behavior and enhanced novelty-induced grooming. These results indicate that, in contrast to acute injection, repeated administration of small doses of the substituted benzamides, sulpiride or raclopride induce an effect similar to that of the classical antidepressant, clomipramine. The reverse dose-response relationship suggests that these drugs in small doses act on presynaptic dopamine D(2) receptors. This may be consistent with a postsynaptic action of greater doses that exert sedative effects and increase immobility time in the despair test. Topics: Animals; Antidepressive Agents; Benzamides; Clomipramine; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Male; Raclopride; Rats; Rats, Wistar; Sulpiride | 2000 |
Enhancement of antipsychotic-like effects by combined treatment with the alpha1-adrenoceptor antagonist prazosin and the dopamine D2 receptor antagonist raclopride in rats.
Blockade of central alpha1-adrenoceptors has been implicated as a possible factor contributing to the atypical antipsychotic profile of clozapine. Thus, in the present study we examined the effects of concomitant alpha1-adrenoceptor and dopamine D2 receptor blockade on conditioned avoidance response performance, as an index of antipsychotic-like activity, and on the induction of catalepsy, as a test for extrapyramidal side effect liability, in rats. It was found that pretreatment with the alpha1-adrenoceptor antagonist prazosin (0.2mg kg(-1) s.c.) caused an enhancement of a suppression of conditioned avoidance response in the presence of the dopamine D2 receptor antagonist raclopride (0.05-0.20 mg kg(-1) s.c.). The effect was most prominent at a subthreshold dose of raclopride (0.05 mg kg(-1)). At these doses, prazosin or raclopride by themselves, or in combination, did not produce catalepsy. In addition, pretreatment with prazosin (0.2mgkg(-1) s.c.) did not alter the catalepsy produced by a higher dose of raclopride (1.0 mg kg(-1) s.c.). It is suggested that, in the presence of low dopamine D2 receptor occupancy, additional alpha1-adrenoceptor blockade might improve antipsychotic efficacy, and thereby improve the therapeutic window with regard to parkinsonism. Topics: Adrenergic alpha-1 Receptor Antagonists; Animals; Antipsychotic Agents; Avoidance Learning; Catalepsy; Conditioning, Psychological; Disease Models, Animal; Dopamine D2 Receptor Antagonists; Dose-Response Relationship, Drug; Drug Interactions; Male; Prazosin; Psychotic Disorders; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, Adrenergic, alpha-1; Receptors, Dopamine D2 | 2000 |
Adenosine and dopamine receptor antagonist binding in the rat ventral and dorsal striatum: lack of changes after a neonatal bilateral lesion of the ventral hippocampus.
There is experimental evidence from radioligand binding experiments for the existence of strong antagonistic interactions between different subtypes of adenosine and dopamine receptors in the striatum, mainly between adenosine A1 and dopamine D1 and between adenosine A2A and dopamine D2 receptors. These interactions seem to be more powerful in the ventral compared to the dorsal striatum, which might have some implications for the treatment of schizophrenia. The binding characteristics of different dopamine and adenosine receptor subtypes were analysed in the different striatal compartments (dorsolateral striatum and shell and core of the nucleus accumbens), by performing saturation experiments with the dopamine D1 receptor antagonist [125I]SCH-23982, the dopamine D2-3 receptor antagonist [3H]raclopride, the adenosine A1 receptor antagonist [3H]DPCPX and the adenosine A2A receptor antagonist [3H]SCH 58261. The experiments were also performed in rats with a neonatal bilateral lesion of the ventral hippocampus (VH), a possible animal model of schizophrenia. Both dopamine D2-3 and adenosine A2A receptors follow a similar pattern, with a lower density of receptors (40%) in the shell of the nucleus accumbens compared with the dorsolateral caudate-putamen. A lower density of adenosine A1 receptors (20%) was also found in the shell of the nucleus accumbens compared with the caudate-putamen. On the other hand, dopamine D1 receptors showed a similar density in the different striatal compartments. Therefore, differences in receptor densities cannot explain the stronger interactions between adenosine and dopamine receptors found in the ventral, compared to the dorsal striatum. No statistical differences in the binding characteristics of any of the different adenosine and dopamine receptor antagonists used were found between sham-operated and VH-lesioned rats. Topics: Animals; Animals, Newborn; Antipsychotic Agents; Benzazepines; Corpus Striatum; Disease Models, Animal; Dopamine Antagonists; Female; Hippocampus; Male; Pregnancy; Purinergic P1 Receptor Antagonists; Pyrimidines; Raclopride; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Purinergic P1; Salicylamides; Schizophrenia; Triazoles; Xanthines | 1999 |
Methamphetamine induces fos expression in the striatum and the substantia nigra pars reticulata in a rat model of Parkinson's disease.
In rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion in the nigrostriatal pathway, methamphetamine (3 mg/kg, i.p.) induced Fos-like immunoreactivity (FLI) not only in the striatum on the intact side but also in the substantia nigra pars reticulata (SNr) on the lesioned side. The methamphetamine-induced hyperexpression of FLI in the SNr on the lesioned side was suppressed by pretreatment with either dopamine D1 receptor antagonist SCH-23390 (0.5 mg/kg, i.p.), D2 receptor antagonist raclopride (2 mg/kg, i.p.) or N-methyl-d-aspartate receptor antagonist MK-801 (1 mg/kg, i.p.), which was concomitant with inhibition of the methamphetamine-induced rotational behavior of each antagonist. However, the hyperexpression of FLI in the SNr was not suppressed by intrastriatal grafts of fetal ventral mesencephalon which could suppress the methamphetamine-induced rotation completely. These results indicate that opposite hemispheric asymmetries in FLI are induced by methamphetamine in the striatum and the SNr in the 6-OHDA rats. It is suggested that the FLIs in the two discrete sites are activated independently by different mechanisms, and furthermore, different neuronal pathways are involved in the methamphetamine-induced rotation and Fos expression in the SNr of 6-OHDA rats. Topics: Animals; Behavior, Animal; Benzazepines; Brain Chemistry; Brain Tissue Transplantation; Corpus Striatum; Disease Models, Animal; Dizocilpine Maleate; Dopamine Agents; Dopamine Antagonists; Excitatory Amino Acid Antagonists; Female; Mesencephalon; Methamphetamine; Neurons; Oxidopamine; Parkinson Disease, Secondary; Proto-Oncogene Proteins c-fos; Raclopride; Rats; Rats, Wistar; Receptors, Dopamine D1; Receptors, Dopamine D2; Rotation; Salicylamides; Substantia Nigra; Sympatholytics; Tyrosine 3-Monooxygenase | 1998 |
Effects of specific dopamine D1 and D2 receptor antagonists and agonists and neuroleptic drugs on emotional defecation in a rat model of akathisia.
An increase in emotional defecation in rats in a well-habituated environment induced by neuroleptic drugs (NDef) has been proposed as a model for neuroleptic-induced akathisia. We examined the effects of dopamine receptor antagonists and agonists on this model. A selective dopamine D1 antagonist (SCH 23390) and a selective D2 antagonist (raclopride) induced increased defecation at higher doses, and demonstrated a synergistic effect at lower doses. Selective D1 (SKF 82958) and D2 (quinpirole) agonists did not have a significant effect on defecation, nor did they reverse the effect of haloperidol. In a further pilot study, we explored the effects of typical and atypical neuroleptics on this model. The haloperidol and risperidone treated rats produced more faecal boli than those treated with clozapine, thioridazine and chlorpromazine, with the former being non-significantly greater than the vehicle-treated group. The results of our studies suggest that NDef is most probably an effect of central dopamine antagonism that is not specific to D1 or D2 receptors, but that the two receptor subtypes have a synergistic effect. It is unlikely to be due to actions of neuroleptics on 5HT2 or alpha1 receptors as has sometimes been suggested. The results have implications for our understanding of the pathogenesis of akathisia. Topics: Akathisia, Drug-Induced; Animals; Antipsychotic Agents; Arousal; Benzazepines; Brain; Defecation; Disease Models, Animal; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Emotions; Humans; Male; Quinpirole; Raclopride; Rats; Rats, Wistar; Receptors, Dopamine D1; Receptors, Dopamine D2; Salicylamides | 1998 |
Local administration of dopaminergic drugs into the ventral tegmental area modulates cataplexy in the narcoleptic canine.
Cataplexy in the narcoleptic canine may be modulated by systemic administration of monoaminergic compounds. In the present study, we have investigated the effects of monoaminergic drugs on cataplexy in narcoleptic canines when perfused locally via microdialysis probes in the amygdala, globus pallidus/putamen, basal forebrain, pontine reticular formation and ventral tegmental area of narcoleptic and control Doberman pinchers. Cataplexy was quantified using the Food-Elicited Cataplexy Test and analyzed by electroencephalogram, electroculogram and electromyogram. Local perfusion with the monoaminergic agonist quinpirole, 7-OH-DPAT and BHT-920, into the ventral tegmental area produced a dose-dependent increase in cataplexy without significantly reducing basal muscle tone. Perfusion with the antagonist raclopride in the same structure produced a moderate reduction in cataplexy. Local perfusion with quinpirole, 7-OH-DPAT and BHT-920 into the globus pallidus/putamen also produced an increase, while raclopride produced a decrease, in cataplexy in narcoleptic canines. In control animals, none of the above drugs produced cataplexy or muscle atonia when perfused into either the ventral tegmental area or the globus pallidus/putamen. Other monoaminergic drugs tested in these two brain areas; prazosin, yohimbine, amphetamine, SKF 38393 and SCH 23390 had no effects on cataplexy. Local perfusion with each of the above listed drugs had no effect on cataplexy in any of the other brain regions examined. These findings show that cataplexy may be regulated by D2/D3 dopaminergic receptors in the ventral tegmental area and perhaps the globus pallidus/ putamen. It is suggested that neurons in the mesolimbic dopamine system of narcoleptics are hypersensitive to dopaminergic autoreceptor agonists. Topics: Amygdala; Animals; Azepines; Cataplexy; Disease Models, Animal; Dogs; Dopamine; Dopamine Agents; Dopamine Agonists; Dopamine Antagonists; Electroencephalography; Electromyography; Electrooculography; Female; Globus Pallidus; Male; Microdialysis; Pons; Putamen; Quinpirole; Raclopride; Reticular Formation; Salicylamides; Sleep, REM; Tetrahydronaphthalenes; Ventral Tegmental Area | 1996 |
Effects of several partial dopamine D2 receptor agonists in Cebus apella monkeys previously treated with haloperidol.
Eight Cebus apella monkeys were treated with haloperidol for 2 years. Five monkeys had developed mild oral tardive dyskinesia and all were primed for neuroleptic induced dystonia, thus serving as a model for both chronic and acute extrapyramidal side effects. In this model, the partial dopamine D2 receptor agonists SDZ HDC-912, SDZ HAC-911, terguride, (-)-3-(3-hydroxyphenyl)-N-propylpiperidine) ((-)-3-PPP) and SND 919 were tested for extrapyramidal side-effect liability. Their antipsychotic potential was also tested, using a dose of dextroamphetamine producing mild stereotypy and moderate motoric unrest. For comparison, the dopamine D2 receptor agonist, LY 171555 and antagonist, raclopride were used. In contrast to the other drugs tested, SDZ HAC-911 consistently reduced oral activity, P < 0.05 (at doses from 0.005 to 0.025 mg/kg). The relative dystonic potencies were raclopride > SDZ HDC-912 > SDZ HAC-911 = terguride. Neither (-)-3-PPP nor SND 919 produced dystonia, but had observable dopamine D2 receptor agonistic effects, (-)-3-PPP producing emesis at 1-4 mg/kg and SND 919 producing motoric unrest and stereotypy at 0.05-0.25 mg/kg. Comparing the antiamphetamine effects of the more antagonist-like drugs with raclopride, the relative potencies were terguride = SDZ HAC-911 > SDZ HDC-912 > raclopride. Comparing the antiamphetamine effects of the more agonist-like drugs with LY 171555, the relative potencies were SND 919 > (-)-3-PPP > LY 171555 in relation to motoric unrest, while neither (-)-3-PPP nor LY 171555 produced inhibition of stereotypy. Topics: Administration, Oral; Amphetamine; Animals; Antipsychotic Agents; Behavior, Animal; Benzothiazoles; Cebus; Disease Models, Animal; Dopamine Agents; Dopamine D2 Receptor Antagonists; Dyskinesia, Drug-Induced; Dystonia; Ergolines; Female; Haloperidol; Lisuride; Male; Piperidines; Pramipexole; Quinpirole; Raclopride; Salicylamides; Thiazoles | 1993 |
Electrical sensitization of the meso-limbic dopaminergic system in rats: a pathogenetic model for schizophrenia.
To study whether it was possible to modify mesolimbic dopaminergic activity by intermittent electrical stimulations (IES), 44 rats were either electrically stimulated or sham-stimulated in the ventral tegmental area (VTA) once daily for 70 days. This was done through chronically implanted intracranial electrodes. The intensity of electrical stimulation was determined by the lowest current that elicited a definite motor response. Stimulated rats demonstrated a significantly potentiated behavioral response after 70 stimulations. Seven months after IES rats still demonstrated an increased sensitivity to electrical stimulations in the VTA. A new stimulation period only resulted in a modest additional fall in threshold values. There was a highly significant difference between the current needed to provoke a given response in sensitized rats and in sham-stimulated rats. The behavioral response to stimulation was suppressed both by the dopamine (DA) D2 receptor antagonists haloperidol and raclopride and by the DA D1 receptor antagonist SCH 23390. Furthermore, stimulated rats showed an enhanced response to stimulation with amphetamine and to a lesser extent with apomorphine. Between stimulation periods sensitized animals demonstrated a reduced social interaction. In conclusion intermittent electrical stimulations of the VTA resulted in a syndrome characterized by a hypersensitive response to electrical and pharmacological DA provocation combined with abnormal social interaction. This animal model has points of resemblance with recent interpretations of the DA hypothesis for schizophrenia. Topics: Amphetamine; Animals; Apomorphine; Benzazepines; Disease Models, Animal; Dopamine D2 Receptor Antagonists; Electric Stimulation; Electroencephalography; Habituation, Psychophysiologic; Haloperidol; Limbic System; Male; Models, Neurological; Motor Activity; Raclopride; Rats; Rats, Wistar; Receptors, Dopamine D1; Salicylamides; Schizophrenia; Seizures; Stereotyped Behavior; Tegmentum Mesencephali; Time Factors | 1993 |
Positive and negative interactions in the behavioural expression of D1 and D2 receptor stimulation in a model of Parkinsonism: role of priming.
Previous exposure to a dopaminergic agonist (priming) strongly potentiates contralateral turning behaviour in response to D1 and D2 agonists in unilaterally 6-hydroxydopamine-lesioned rats. In order to study the influence of priming on the behavioural interaction of D1 and D2 receptors, we examined the effect of selective D1 and D2 receptor blockade on the contralateral turning induced by the mixed D2/D2 agonist apomorphine in drug-naive and primed 6-hydroxydopamine-lesioned rats. In drug-naive rats, apomorphine induced a dose-related, apparently monophasic rotation curve. Administration of selective D1 (SCH 23390) or D2 (raclopride) antagonists abolished the contralateral turning induced by 0.1 mg/kg of apomorphine and partially inhibited that induced by 0.5 mg/kg. In primed rats low doses of apomorphine (0.05 mg/kg) induced an apparently monophasic contralateral turning which was reduced by D1 receptor blockade and completely abolished by D2 receptor blockade; a higher dose of apomorphine (0.1 mg/kg) instead elicited a biphasic (two-peak) pattern of rotation. After this dose of the agonist, blockade of D1 or D2 receptors abolished the second peak of rotation but, while D1 blockade reduced the total number of turns, D2 blockade failed to do so. Quantitative analysis of the interaction between D1 and D2 receptors in the overall turning effect, as well as in the time-course of turning behaviour, indicates that D1 and D2 receptors interact not only positively but also negatively. After higher doses of apomorphine, both negative and positive interactions take place sequentially during the time-course of apomorphine action and provide a clue for explaining the two-peak pattern of rotation observed after apomorphine in rats previously exposed to the drug. Topics: Animals; Apomorphine; Behavior, Animal; Benzazepines; Disease Models, Animal; Dopamine Antagonists; Hydroxydopamines; Male; Oxidopamine; Parkinson Disease; Raclopride; Rats; Rats, Inbred Strains; Receptors, Dopamine; Receptors, Dopamine D1; Receptors, Dopamine D2; Salicylamides; Stereotyped Behavior | 1991 |
Comparison of chronic administration of haloperidol and the atypical neuroleptics, clozapine and raclopride, in an animal model of tardive dyskinesia.
Rats were administered haloperidol, clozapine, raclopride, or no drug for either 28 days or 8 months and then withdrawn from drug treatment for 3 weeks. Oral movements were repeatedly recorded, both by a human observer and by a computerized video analysis system which determined mouth openings and closings, or computer-scored movelets (CSMs). Four weeks of neuroleptic administration produced no changes in CSMs in any drug-treated group. Long-term administration induced distinctively different patterns of oral activity in the three drug groups, both in number of CSMs and the form of these movements. The oral movements which developed in the haloperidol-treated rats fit a previously described syndrome of late-onset oral dyskinesias which increased upon drug withdrawal. The clozapine- and raclopride-treated rats did not show the increased oral movements seen in the haloperidol animals, but each exhibited uniquely different CSM characteristics compared to controls. The results from this rodent model imply that haloperidol, but not clozapine or raclopride, produces late-onset oral dyskinesias in rats that fit the pattern expected for tardive dyskinesia. Topics: Animals; Behavior, Animal; Body Weight; Clozapine; Dibenzazepines; Disease Models, Animal; Drinking; Dyskinesia, Drug-Induced; Female; Fourier Analysis; Haloperidol; Raclopride; Rats; Rats, Inbred Strains; Salicylamides | 1990 |