r18-peptide and Stroke

r18-peptide has been researched along with Stroke* in 3 studies

Other Studies

3 other study(ies) available for r18-peptide and Stroke

ArticleYear
Poly-Arginine Peptide-18 (R18) Reduces Brain Injury and Improves Functional Outcomes in a Nonhuman Primate Stroke Model.
    Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 2020, Volume: 17, Issue:2

    Poly-arginine peptide-18 (R18) is neuroprotective in different rodent middle cerebral artery occlusion (MCAO) stroke models. In this study, we examined whether R18 treatment could reduce ischemic brain injury and improve functional outcome in a nonhuman primate (NHP) stroke model. A stroke was induced in male cynomolgus macaques by MCAO distal to the orbitofrontal branch of the MCA through a right pterional craniotomy, using a 5-mm titanium aneurysm clip for 90 min. R18 (1000 nmol/kg) or saline vehicle was administered intravenously 60 min after the onset of MCAO. Magnetic resonance imaging (MRI; perfusion-weighted imaging, diffusion-weighted imaging, or T2-weighted imaging) of the brain was performed 15 min, 24 h, and 28 days post-MCAO, and neurological outcome was assessed using the NHP stroke scale (NHPSS). Experimental endpoint was 28 days post-MCAO, treatments were randomized, and all procedures were performed blinded to treatment status. R18 treatment reduced infarct lesion volume by up to 65.2% and 69.7% at 24 h and 28 days poststroke, respectively. Based on NHPSS scores, R18-treated animals displayed reduced functional deficits. This study confirms the effectiveness of R18 in reducing the severity of ischemic brain injury and improving functional outcomes after stroke in a NHP model, and provides further support for its clinical development as a stroke neuroprotective therapeutic.

    Topics: Animals; Brain; Disease Models, Animal; Intracellular Signaling Peptides and Proteins; Macaca fascicularis; Male; Neuroprotective Agents; Recovery of Function; Stroke

2020
Poly-Arginine Peptides R18 and R18D Improve Functional Outcomes After Endothelin-1-Induced Stroke in the Sprague Dawley Rat.
    Journal of neuropathology and experimental neurology, 2019, 05-01, Volume: 78, Issue:5

    We have previously demonstrated that R18 and its d-enantiomer, R18D, are neuroprotective at 24 hours following intraluminal filament occlusion of the middle cerebral artery (MCAO) in the rat. This study examined R18 and R18D effectiveness in improving functional outcomes at up to 56 days poststroke following endothelin-1-induced MCAO. Peptides were administered intravenously at doses of 100, 300, or 1000 nmol/kg, 60 minutes after MCAO. Functional recovery poststroke was assessed using multiple forelimb placing tests and horizontal ladder test, and NA-1 (TAT-NR2B9c), a neuroprotective currently in phase 3 clinical stroke trials, was used as a benchmark. The study demonstrated that R18 (300 and 1000 nmol/kg) was the most effective peptide in improving functional outcomes, followed by R18D (300 and 1000 nmol/kg), and NA-1 (300 and 100 nmol/kg). Furthermore, R18 at doses of 300 and 1000 nmol/kg was the most effective agent in restoring pre-stroke body weight, while R18 and R18D at doses of 300 and 1000 nmol/kg, but not NA-1 also significantly reduced the number of animals requiring hand feeding 48 hours after stroke. This study confirms that R18 and R18D are effective in improving long-term functional outcomes after stroke, and suggests that R18 may be more effective than NA-1.

    Topics: Animals; Endothelin-1; Infusions, Intravenous; Intracellular Signaling Peptides and Proteins; Male; Peptides; Rats; Rats, Sprague-Dawley; Recovery of Function; Stroke; Treatment Outcome

2019
Delayed 2-h post-stroke administration of R18 and NA-1 (TAT-NR2B9c) peptides after permanent and/or transient middle cerebral artery occlusion in the rat.
    Brain research bulletin, 2017, Volume: 135

    Following positive results with the poly-arginine peptide R18 when administered intravenously 30 or 60min after permanent and/or transient middle cerebral artery occlusion (MCAO; 90min) in the rat, we examined the effectiveness of the peptide when administered 2h after MCAO. R18 was administered intravenously (1000nmol/kg via jugular vein) after permanent MCAO or a transient 3-h MCAO or when administered intra-arterially (100nmol/kg via internal carotid artery) immediately after reperfusion following a transient 2-h MCAO. In the transient MCAO studies, the neuroprotective NA-1 peptide was used as a positive control. Infarct volume, cerebral edema and functional outcomes were measured 24h after MCAO. Following permanent or transient MCAO, neither R18 nor NA-1 significantly reduced infarct volume. However, following permanent MCAO, R18 appeared to reduce cerebral edema (p=0.006), whereas following a transient 3-h MCAO, R18 improved the time to remove adhesive tape (p=0.04) without significantly affecting cerebral edema. There was also a trend (p=0.07) towards improved rota-rod performance with R18 in both permanent and transient 3-h MCAO. Following a transient 2-h MCAO, R18 had no significant effects on cerebral edema or neurological score but did lessen the extent of weight loss. Overall, while R18 had no effect on infarct volume, the peptide reduced cerebral edema after permanent MCAO, and improved some functional outcomes after transient MCAO.

    Topics: Animals; Brain Edema; Brain Ischemia; Carotid Artery Injuries; Carotid Artery, Internal; Cerebral Arteries; Cerebrovascular Disorders; Disease Models, Animal; Infarction, Middle Cerebral Artery; Intracellular Signaling Peptides and Proteins; Ischemic Attack, Transient; Male; Neuroprotective Agents; Peptides; Rats; Reperfusion; Stroke

2017