r-115866 and Disease-Models--Animal

r-115866 has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for r-115866 and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
CYP26 inhibitor R115866 increases retinoid signaling in intimal smooth muscle cells.
    Arteriosclerosis, thrombosis, and vascular biology, 2007, Volume: 27, Issue:7

    Intimal smooth muscle cells (SMCs) are dedifferentiated SMCs that have a powerful ability to proliferate and migrate. This cell-type is responsible for the development of intimal hyperplasia after vascular angioplasty. Retinoids, especially all-trans retinoid acid, are known to regulate many processes activated at sites of vascular injury, including modulation of SMC phenotype and inhibition of SMC proliferation. Intracellular levels of active retinoids are under firm control. A key enzyme is the all-trans retinoic acid-degrading enzyme cytochrome p450 isoform 26 (CYP26). Thus, an alternative approach to exogenous retinoid administration could be to increase the intracellular level of all-trans retinoic acid by blocking CYP26-mediated degradation of retinoids.. Vascular intimal and medial SMCs expressed CYP26A1 and B1 mRNA. Although medial cells remained unaffected, treatment with the CYP26-inhibitor R115866 significantly increased cellular levels of all-trans retinoic acid in intimal SMCs. The increased levels of all-trans retinoic acid induced retinoid-regulated genes and decreased mitogenesis.. Blocking of the CYP26-mediated catabolism mimics the effects of exogenously administrated active retinoids on intimal SMCs. Therefore, CYP26-inhibitors offer a potential new therapeutic approach to vascular proliferative disorders.

    Topics: Analysis of Variance; Animals; Aorta, Thoracic; Benzothiazoles; Cell Proliferation; Cells, Cultured; Cytochrome P-450 Enzyme Inhibitors; Cytochrome P-450 Enzyme System; Disease Models, Animal; Male; Muscle, Smooth, Vascular; Probability; Protein Isoforms; Rats; Rats, Sprague-Dawley; Retinoids; Reverse Transcriptase Polymerase Chain Reaction; Sensitivity and Specificity; Signal Transduction; Triazoles; Tunica Intima; Tunica Media

2007