quinoxalines has been researched along with CACH Syndrome in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 3 (100.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Brown, AM; Chen, S; Evans, RD; Hamner, MA; Ransom, BR; Yang, X; Ye, ZC | 1 |
Ahmed, A; Ahmed, E; Ballabh, P; Dohare, P; Kayton, R; Mongin, AA; Ortega, JA; Schober, AL; Ungvari, Z; Yadala, V; Zia, MT | 1 |
Deng, W; Liu, XB; Pleasure, DE; Shen, Y | 1 |
3 other study(ies) available for quinoxalines and CACH Syndrome
Article | Year |
---|---|
Novel hypoglycemic injury mechanism: N-methyl-D-aspartate receptor-mediated white matter damage.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Aspartic Acid; Brain; Calcium; Disease Models, Animal; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Glycogen; Hydrogen-Ion Concentration; Hypoglycemia; Kynurenic Acid; Lactic Acid; Leukoencephalopathies; Mice; Mice, Inbred C57BL; Optic Nerve Injuries; Quinoxalines; Receptors, N-Methyl-D-Aspartate | 2014 |
AMPA-Kainate Receptor Inhibition Promotes Neurologic Recovery in Premature Rabbits with Intraventricular Hemorrhage.
Topics: Animals; Animals, Newborn; Apoptosis; Brain; Calcium Signaling; Cerebral Ventricles; Cytokines; Disease Models, Animal; Excitatory Amino Acid Antagonists; Female; Glycerol; Hemorrhage; Humans; Leukoencephalopathies; Male; Nervous System Diseases; Nitriles; Pregnancy; Pyridones; Quinoxalines; Rabbits; Receptors, AMPA; Recovery of Function | 2016 |
Axon-glia synapses are highly vulnerable to white matter injury in the developing brain.
Topics: Animals; Animals, Newborn; Antigens; Brain Injuries; Carotid Artery Diseases; Disease Models, Animal; Excitatory Amino Acid Antagonists; Functional Laterality; Glial Fibrillary Acidic Protein; Hypoxia-Ischemia, Brain; Leukoencephalopathies; Luminescent Proteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Microscopy, Electron, Transmission; Minocycline; Myelin Basic Protein; Nerve Fibers, Myelinated; Neuroglia; Polysaccharides; Proteoglycans; Quinoxalines; Receptors, AMPA; Synapses; Vesicular Glutamate Transport Protein 1; Vesicular Glutamate Transport Protein 2 | 2012 |