quinazolines has been researched along with Cancer of Nasopharynx in 27 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (3.70) | 18.2507 |
2000's | 6 (22.22) | 29.6817 |
2010's | 16 (59.26) | 24.3611 |
2020's | 4 (14.81) | 2.80 |
Authors | Studies |
---|---|
Bian, X; Guo, W; He, X; Huang, S; Jiang, N; Jiang, X; Li, F; Liu, J; Song, D; Sun, X; Wang, B; Wang, F; Wu, J; Yan, P; Yin, H; Yin, L; Zhang, F; Zhou, C; Zhou, H | 1 |
Bao, X; Deng, A; Li, Q; Wang, L; Wang, M; Xiang, Y; Yu, W; Zhang, B; Zhang, Y | 1 |
Ding, WJ; Dong, QH; Wang, W; Yang, HH; Zhu, J | 1 |
Bao, X; Chen, C; Deng, A; Deng, P; He, M; Ji, D; Li, Q; Liang, X; Lu, Y; Pi, H; Tan, G; Wang, L; Yu, Z; Zhang, L; Zhou, Z | 1 |
Liu, F; Liu, Y; Luo, H; Wu, Y; Zhao, Y | 1 |
Deng, XB; Jin, ZR; Li, XQ; Liu, QZ; Liu, Y; Ma, L; Miao, XB; Sun, DX; Testa, JR; Wu, Y; Xiao, GH; Yao, KT; Zhang, G | 1 |
Gu, WG; He, ZR; Huang, Y; Luo, HT; Peng, RJ; Wang, SS; Yuan, ZY | 1 |
Lin, J; Wang, L; Xie, B; Xu, T; Zhang, W; Zheng, J; Zhou, J | 1 |
Chow, JP; Hong, MJ; Li, J; Ma, HT; Mak, JP; Man, WY; Poon, RY | 1 |
Ai, P; Li, J; Peng, X; Wang, L; Zeng, Y; Zhang, Q | 1 |
Cui, Y; Li, X; Liu, H; Wang, D; Xu, T; Yin, B; Zhang, C; Zhang, Y | 1 |
Fang, W; Tian, Y; Xue, C; Zhan, J; Zhang, J; Zhang, L; Zhao, Y | 1 |
Chen, N; Huang, P; Lin, Z; Liu, L; Peng, P; Tang, C; Wang, Z | 1 |
Chan, AT; Chen, H; Cheng, SH; Lo, KW; Lui, VW; Ma, BB; Ng, MH; Poon, FF; Tao, Q; To, KF; Wong, E; Wong, SC | 1 |
Huang, W; Jia, H; Ma, J; Tan, L; Wu, J; Yan, H; Yang, S; Zeng, M; Zhu, X; Zuo, Y | 1 |
Chan, AT; Cheng, SH; Ho, K; Lau, CP; Lei, KI; Lui, VW; Mok, TS; Ng, MH; Tsang, CM; Tsao, SW | 1 |
Chen, ZC; Guan, YJ; Li, C; Li, MY; Li, XH; Liang, K; Peng, F; Tang, CE; Xiao, ZQ; Yao, KT; Yi, B; Yi, H; Zhang, PF; Zou, HY | 1 |
Bharadwaj, RR; Chen, EX; Jarvi, A; Kamel-Reid, S; Le Tourneau, C; Mann, V; Perez-Ordonez, B; Siu, LL; Wang, L; You, B | 1 |
He, BF; Huang, BY; Luo, RC; Sun, AM; Wang, WJ; Zheng, XK | 1 |
Chan, AT; Cheng, SH; Cheung, CS; Ho, K; Hui, EP; Lau, CP; Lui, VW; Ma, BB; Ng, MH; Ng, PK; Tsao, SW; Tsui, SK | 1 |
Guan, ZZ; Jiang, WQ; Lin, TY; Wang, SS; Zhang, L | 1 |
Guan, ZZ; Jiang, WQ; Lin, TY; Wang, SS; Xiang, YQ; Zhang, L | 1 |
Huang, W; Liu, QQ; Liu, R; Wu, J; Xiao, X; Zeng, M; Zhao, P; Zheng, L; Zhou, J; Zhu, X | 1 |
Ahuja, A; Chan, AT; Hui, EP; Kam, M; King, A; Leung, SF; Lo, YM; Ma, B; Mo, F; Mok, T; To, KF; Zee, B | 1 |
Au, GK; Chua, DT; Nicholls, J; Sham, JS; Wei, WI; Wong, MP | 1 |
Jansen, G; Peters, GJ; Pinedo, HM; Rijnboutt, S; Schornagel, JH; Westerhof, GR | 1 |
Feng, GK; Li, ZM; Liu, ZC; Xie, BF; Yang, D; Zeng, YX; Zhu, XF | 1 |
1 review(s) available for quinazolines and Cancer of Nasopharynx
Article | Year |
---|---|
ZD6474, a small molecule tyrosine kinase inhibitor, potentiates the anti-tumor and anti-metastasis effects of radiation for human nasopharyngeal carcinoma.
Topics: Animals; Apoptosis; Carcinoma; Chemotherapy, Adjuvant; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; Neoplasm Metastasis; Piperidines; Protein Kinase Inhibitors; Quinazolines | 2010 |
5 trial(s) available for quinazolines and Cancer of Nasopharynx
Article | Year |
---|---|
Raltitrexed versus 5-fluorouracil with cisplatin and concurrent radiotherapy for locally advanced nasopharyngeal carcinoma: An open labeled, randomized, controlled, and multicenter clinical trial.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Bone Marrow; Chemoradiotherapy; Chi-Square Distribution; Cisplatin; Female; Fluorouracil; Humans; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Progression-Free Survival; Quinazolines; Stomatitis; Thiophenes; Young Adult | 2020 |
Metastatic nasopharyngeal carcinoma outcomes in patients on cisplatin with nolatrexed or 5-fluorouracil.
Topics: Adult; Aged; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Carcinoma; Cisplatin; Disease-Free Survival; Female; Fluorouracil; Humans; Male; Middle Aged; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Recurrence, Local; Quinazolines; Survival Rate; Treatment Outcome | 2014 |
A Phase II trial of erlotinib as maintenance treatment after gemcitabine plus platinum-based chemotherapy in patients with recurrent and/or metastatic nasopharyngeal carcinoma.
Topics: Adult; Aged; Antineoplastic Combined Chemotherapy Protocols; Carboplatin; Cisplatin; Deoxycytidine; Disease Progression; Erlotinib Hydrochloride; Female; Follow-Up Studies; Gemcitabine; Humans; Male; Middle Aged; Nasopharyngeal Neoplasms; Neoplasm Metastasis; Neoplasm Recurrence, Local; Neoplasm Staging; Prognosis; Quinazolines; Salvage Therapy; Survival Rate | 2012 |
A phase II study of patients with metastatic or locoregionally recurrent nasopharyngeal carcinoma and evaluation of plasma Epstein-Barr virus DNA as a biomarker of efficacy.
Topics: Adult; Antineoplastic Agents; Biomarkers, Tumor; Disease Progression; DNA, Viral; ErbB Receptors; Female; Gefitinib; Herpesvirus 4, Human; Humans; Male; Middle Aged; Nasopharyngeal Neoplasms; Neoplasm Metastasis; Neoplasm Recurrence, Local; Quinazolines; Radiography; Survival | 2008 |
Phase II study of gefitinib for the treatment of recurrent and metastatic nasopharyngeal carcinoma.
Topics: Adult; Antineoplastic Combined Chemotherapy Protocols; Carcinoma, Squamous Cell; Dose-Response Relationship, Drug; Drug Administration Schedule; Female; Follow-Up Studies; Gefitinib; Humans; Male; Maximum Tolerated Dose; Middle Aged; Nasopharyngeal Neoplasms; Neoplasm Metastasis; Neoplasm Recurrence, Local; Neoplasm Staging; Quinazolines; Risk Assessment; Survival Analysis; Treatment Outcome | 2008 |
21 other study(ies) available for quinazolines and Cancer of Nasopharynx
Article | Year |
---|---|
BIX-01294-enhanced chemosensitivity in nasopharyngeal carcinoma depends on autophagy-induced pyroptosis.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Autophagy; Autophagy-Related Protein 5; Azepines; bcl-2-Associated X Protein; Caspase 3; Cell Line, Tumor; Cell Survival; Chloroquine; Cisplatin; CRISPR-Cas Systems; Gene Knockout Techniques; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Microtubule-Associated Proteins; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Pyroptosis; Quinazolines; Receptors, Estrogen; Signal Transduction | 2020 |
[Icotinib combined with radiotherapy for childhood nasopharyngeal carcinoma: A case report and review of the literature].
Topics: Child; Combined Modality Therapy; Crown Ethers; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Prognosis; Quinazolines; Radiotherapy; Radiotherapy Dosage; Treatment Outcome | 2020 |
BIX-01294, a G9a inhibitor, suppresses cell proliferation by inhibiting autophagic flux in nasopharyngeal carcinoma cells.
Topics: Antineoplastic Agents; Autophagosomes; Azepines; Cell Line, Tumor; Cell Physiological Phenomena; Histocompatibility Antigens; Histone-Lysine N-Methyltransferase; Humans; Lysosomal Membrane Proteins; Lysosomal-Associated Membrane Protein 2; Lysosomes; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Quinazolines; RNA, Small Interfering | 2021 |
Construction of EGFR peptide gefitinib/quantum dots long circulating polymeric liposomes for treatment and detection of nasopharyngeal carcinoma.
Topics: Antineoplastic Agents; Carcinoma; Cell Proliferation; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Gefitinib; Humans; Liposomes; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Peptides; Polymers; Quantum Dots; Quinazolines; Structure-Activity Relationship; Tumor Cells, Cultured | 2017 |
Cancer stem-like cell properties are regulated by EGFR/AKT/β-catenin signaling and preferentially inhibited by gefitinib in nasopharyngeal carcinoma.
Topics: Animals; Antineoplastic Agents; beta Catenin; Carcinoma; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cell Transformation, Neoplastic; Cisplatin; ErbB Receptors; Gefitinib; Gene Knockdown Techniques; Homeodomain Proteins; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Nanog Homeobox Protein; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Transplantation; Neoplastic Stem Cells; Proto-Oncogene Proteins c-akt; Quinazolines; Side-Population Cells; Signal Transduction; Spheroids, Cellular; Xenograft Model Antitumor Assays | 2013 |
ZD1839 and cisplatin alone or in combination for treatment of a nasopharyngeal carcinoma cell line and Xenografts.
Topics: Animals; Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Blotting, Western; Cell Cycle; Cell Proliferation; Cisplatin; Drug Synergism; Female; Flow Cytometry; Gefitinib; Heterografts; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Nasopharyngeal Neoplasms; Quinazolines; Tumor Cells, Cultured | 2013 |
Co-inhibition of polo-like kinase 1 and Aurora kinases promotes mitotic catastrophe.
Topics: Animals; Antineoplastic Agents; Aurora Kinase A; Aurora Kinase B; Carcinoma; Cell Cycle Proteins; Cyclohexanecarboxylic Acids; Drug Synergism; Female; HeLa Cells; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Mitosis; Molecular Targeted Therapy; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Organophosphates; Polo-Like Kinase 1; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Pteridines; Quinazolines; Thiazoles; Tumor Cells, Cultured | 2015 |
Evodiamine inhibits the migration and invasion of nasopharyngeal carcinoma cells in vitro via repressing MMP-2 expression.
Topics: Blotting, Western; Carcinoma; Cell Adhesion; Cell Line, Tumor; Cell Movement; Cell Survival; Dose-Response Relationship, Drug; Gene Expression Regulation, Neoplastic; Humans; MAP Kinase Signaling System; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Molecular Structure; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; NF-kappa B; Phosphorylation; Quinazolines; Reverse Transcriptase Polymerase Chain Reaction | 2015 |
Intravoxel Incoherent Motion Diffusion-weighted Magnetic Resonance Imaging for Monitoring the Early Response to ZD6474 from Nasopharyngeal Carcinoma in Nude Mouse.
Topics: Animals; Antineoplastic Agents; Carcinoma; Cell Line, Tumor; Diffusion Magnetic Resonance Imaging; Humans; Image Processing, Computer-Assisted; Ki-67 Antigen; Mice; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Piperidines; Quinazolines; Radiography; Transplantation, Heterologous | 2015 |
In vitro and in vivo efficacy of afatinib as a single agent or in combination with gemcitabine for the treatment of nasopharyngeal carcinoma.
Topics: Afatinib; Animals; Antineoplastic Agents; Carcinoma; Cell Cycle Checkpoints; Cell Line, Tumor; Cell Proliferation; Deoxycytidine; Dose-Response Relationship, Drug; Gemcitabine; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasms, Experimental; Quinazolines; Structure-Activity Relationship | 2016 |
Inhibition of eEF-2 kinase sensitizes human nasopharyngeal carcinoma cells to lapatinib-induced apoptosis through the Src and Erk pathways.
Topics: Apoptosis; Carcinoma; Cell Line, Tumor; Cell Proliferation; Drug Resistance, Neoplasm; Drug Synergism; Elongation Factor 2 Kinase; Extracellular Signal-Regulated MAP Kinases; Gene Silencing; Humans; Lapatinib; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Protein Kinase Inhibitors; Quinazolines; RNA Interference; Signal Transduction; src-Family Kinases | 2016 |
Preclinical activity of gefitinib in non-keratinizing nasopharyngeal carcinoma cell lines and biomarkers of response.
Topics: Antineoplastic Agents; Apoptosis; Biomarkers, Pharmacological; Cell Cycle; Cell Line, Tumor; Cell Proliferation; DNA Mutational Analysis; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; ErbB Receptors; Gefitinib; Gene Expression Regulation, Neoplastic; Humans; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; Proto-Oncogene Proteins; Proto-Oncogene Proteins p21(ras); Quinazolines; ras Proteins | 2010 |
Anti-invasion, anti-proliferation and anoikis-sensitization activities of lapatinib in nasopharyngeal carcinoma cells.
Topics: Anoikis; Antineoplastic Agents; Carcinoma; Caspase 3; Cell Cycle; Cell Line, Tumor; Cell Proliferation; ErbB Receptors; Humans; Lapatinib; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Neoplasm Invasiveness; Poly(ADP-ribose) Polymerases; Protein Kinase Inhibitors; Quinazolines; Receptor, ErbB-2 | 2011 |
Identification of the amyloid β-protein precursor and cystatin C as novel epidermal growth factor receptor regulated secretory proteins in nasopharyngeal carcinoma by proteomics.
Topics: Amyloid beta-Protein Precursor; Androstadienes; Antibodies, Monoclonal; Blotting, Western; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cystatin C; Electrophoresis, Gel, Two-Dimensional; Enzyme Inhibitors; ErbB Receptors; Humans; Immunohistochemistry; Nasopharyngeal Neoplasms; Proteomics; Quinazolines; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization; Transforming Growth Factor alpha; Wortmannin | 2010 |
[Gefitinib enhances the radiosensitivity of nasopharyngeal carcinoma cell line CNE2 in vitro].
Topics: Apoptosis; Carcinoma; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Flow Cytometry; Gefitinib; Humans; Nasopharyngeal Carcinoma; Nasopharyngeal Neoplasms; Quinazolines; Radiation Tolerance | 2011 |
Activity of the MEK inhibitor selumetinib (AZD6244; ARRY-142886) in nasopharyngeal cancer cell lines.
Topics: Antineoplastic Agents; Apoptosis; Benzimidazoles; Cell Cycle; Cell Line, Tumor; Cell Survival; Cisplatin; Drug Synergism; Gefitinib; Humans; Mitogen-Activated Protein Kinase Kinases; Nasopharyngeal Neoplasms; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Quinazolines | 2013 |
[Effect of epidermal growth factor receptor-selective tyrosine kinase inhibitor ZD1839 on nasopharyngeal carcinoma cells].
Topics: Antimetabolites, Antineoplastic; Antineoplastic Agents; Apoptosis; Carcinoma, Squamous Cell; Cell Line, Tumor; Cell Proliferation; Cisplatin; Dose-Response Relationship, Drug; Drug Synergism; ErbB Receptors; Fluorouracil; G1 Phase; Gefitinib; Humans; Nasopharyngeal Neoplasms; Protein Kinase Inhibitors; Quinazolines | 2004 |
[Effect of epidermal growth factor receptor-selective tyrosine kinase inhibitor gefitinib on nasopharyngeal carcinoma xenografts].
Topics: Animals; Antineoplastic Agents; Body Weight; Cell Line, Tumor; Cisplatin; Drug Synergism; ErbB Receptors; Female; Gefitinib; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Nasopharyngeal Neoplasms; Neoplasm Transplantation; Protein Kinase Inhibitors; Protein-Tyrosine Kinases; Quinazolines; Random Allocation | 2004 |
Induction of cell cycle arrest and apoptosis in human nasopharyngeal carcinoma cells by ZD6474, an inhibitor of VEGFR tyrosine kinase with additional activity against EGFR tyrosine kinase.
Topics: Animals; Apoptosis; Cell Cycle; Cell Line, Tumor; ErbB Receptors; Female; Humans; Mice; Mice, Inbred BALB C; Mice, Nude; Nasopharyngeal Neoplasms; Piperidines; Protein Kinase Inhibitors; Quinazolines; Receptors, Vascular Endothelial Growth Factor; Signal Transduction; Survival Rate; Xenograft Model Antitumor Assays | 2007 |
Functional activity of the reduced folate carrier in KB, MA104, and IGROV-I cells expressing folate-binding protein.
Topics: Aminopterin; Animals; Carrier Proteins; Cell Division; Female; Folate Receptors, GPI-Anchored; Folic Acid; Folic Acid Antagonists; Glutamates; Haplorhini; Humans; Kidney; Leucovorin; Methotrexate; Nasopharyngeal Neoplasms; Ovarian Neoplasms; Quinazolines; Receptors, Cell Surface; Tetrahydrofolates; Thiophenes; Tumor Cells, Cultured | 1995 |
EGFR tyrosine kinase inhibitor AG1478 inhibits cell proliferation and arrests cell cycle in nasopharyngeal carcinoma cells.
Topics: Cell Cycle; Cell Cycle Proteins; Cell Division; Cyclin-Dependent Kinase Inhibitor p27; Enzyme Activation; Enzyme Inhibitors; ErbB Receptors; G1 Phase; Growth Inhibitors; Humans; MAP Kinase Signaling System; Microtubule-Associated Proteins; Mitogen-Activated Protein Kinases; Nasopharyngeal Neoplasms; Phosphorylation; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-akt; Quinazolines; Tumor Cells, Cultured; Tumor Suppressor Proteins; Tyrphostins; Up-Regulation | 2001 |