quercetin and Neoplasms

quercetin has been researched along with Neoplasms* in 19 studies

Reviews

11 review(s) available for quercetin and Neoplasms

ArticleYear
The untapped potential of spermidine alkaloids: Sources, structures, bioactivities and syntheses.
    European journal of medicinal chemistry, 2022, Oct-05, Volume: 240

    Spermidine alkaloids are a kind of natural products possessing an aliphatic triamine structure with three or four methylene groups between two N-atoms. Spermidine alkaloids exist in plants, microorganisms, and marine organisms, which usually form amide structures with cinnamic acid or fatty acid derivatives. Their unique structures showed a wide range of biological activities such as neuroprotective, anti-aging, anti-cancer, antioxidant, anti-inflammatory, and antimicrobial. In order to better understand the research status of spermidine alkaloids and promote their applications in human health, this paper systematically reviewed the biological sources, structures, pharmacological actions, and synthetic processes of spermidine alkaloids over the past two decades. This will help to open up new pharmacological investigation fields and better drug design based on these spermidine alkaloids.

    Topics: Alkaloids; Anti-Infective Agents; Biological Products; Humans; Neoplasms; Spermidine

2022
Sarco/Endoplasmic Reticulum Calcium ATPase Inhibitors: Beyond Anticancer Perspective.
    Journal of medicinal chemistry, 2020, 03-12, Volume: 63, Issue:5

    Topics: Animals; Antineoplastic Agents; Enzyme Inhibitors; Gene Regulatory Networks; Humans; Neoplasms; Protein Structure, Secondary; Sarcoplasmic Reticulum Calcium-Transporting ATPases

2020
Phytoestrogens and their synthetic analogues as substrate mimic inhibitors of CYP1B1.
    European journal of medicinal chemistry, 2019, Feb-01, Volume: 163

    Phytoestrogens are class of natural compounds that shares structural similarity with estrogen and has the capacity to alter the fertilization in mammals. Till early 1990s, the natural phytoestrogens as well as their synthetic analogues were explored for their fertility modulating activity. During late 1990s, two findings renewed the interest on phytoestrogens as means to control hormone induced cancer: (i) revelation of overexpression of CYP1B1 in breast & ovarian cancer and (ii) protection offered by alphanapthoflavone (ANF) against hormone induced cancer. The objective of the review is to summarize the CYP1B1 inhibitory activity of phytoestrogens and their synthetic analogues reported till date. This review is an attempt to classify phytoestrogens and their synthetic analogues on their chemical architecture rather than simply by their chemical class (flavones, stilbenes etc.). This provides a broader sense to cluster many chemical classes under a particular chemical architecture/framework. Accordingly, we divided the phytoestrogen into three different classes based on two aryl groups (Ar) separated by linker (X), which may be either cyclic (c) or linear (l). The number in subscript to X denotes number of atoms: (i) Ar-cX

    Topics: Animals; Antineoplastic Agents, Phytogenic; Classification; Cluster Analysis; Cytochrome P-450 CYP1B1; Enzyme Inhibitors; Humans; Molecular Mimicry; Neoplasms; Phytoestrogens

2019
A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs.
    Bioorganic & medicinal chemistry, 2019, 03-01, Volume: 27, Issue:5

    Protein kinases have been important targets for antitumor targets due to their key roles in regulating multiple cell signaling pathways. Numerous compounds containing flavonoid scaffold as an indispensable anchor have been found to be potent inhibitors of protein kinases. Some of these flavonoids have been in clinical research as protein kinases inhibitors. Thus, the present review mainly focuses on the structural requirement for anticancer potential of flavone derivatives targeting several key serine/threonine protein kinases. This information may provide an opportunity to scientists of medicinal chemistry to design multi-functional flavone derivatives for the treatment of cancer.

    Topics: Animals; Antineoplastic Agents; Flavones; Humans; Neoplasms; Protein Binding; Protein Kinase Inhibitors; Protein Serine-Threonine Kinases

2019
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    Inhibitors of the ubiquitin-proteasome system (UPS) have been the object of research interests for many years because of their potential as anti-cancer agents. Research in this field is aimed at improving the specificity and safety of known proteasome inhibitors. Unfortunately, in vitro conditions do not reflect the processes taking place in the human body. Recent reports indicate that the components of human plasma affect the course of many signaling pathways, proteasome activity and the effectiveness of synthetic cytostatic drugs. Therefore, it is believed that the key issue is to determine the effects of components of the human diet, including effects of chemically active polyphenols on the ubiquitin-proteasome system activity in both physiological and pathological (cancerous) states. The following article summarizes the current knowledge on the direct and indirect synergistic and antagonistic effects between polyphenolic compounds present in the human diet and the efficiency of protein degradation via the UPS.

    Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin

2019
The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile.
    European journal of medicinal chemistry, 2019, Nov-01, Volume: 181

    Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.

    Topics: Anticarcinogenic Agents; Antioxidants; Diet, Mediterranean; Fruit; Humans; Neoplasms; Olive Oil; Vegetables; Wine

2019
Recent discoveries of anticancer flavonoids.
    European journal of medicinal chemistry, 2017, Dec-15, Volume: 142

    In this review we report the recent advances in anticancer activity of the family of natural occurring flavonoids, covering the time span of the last five years. The bibliographic data will be grouped, on the basis of biological information, in two great categories: reports in which the extract plants bioactivity is reported and the identification of each flavonoid is present or not, and reports in which the anticancer activity is attributable to purified and identified flavonoids from plants. Wherever possible, the targets and mechanisms of action as well as the structure-activity relationships of the molecules will be reported. Also, in the review it was thoroughly investigated the recent discovery on flavonoids containing the 2-phenyl-4H-chromen-4-one system even if some examples of unusual flavonoids, bearing a non-aromatic B-ring or other ring condensed to the base structure are reported.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Benzopyrans; Drug Discovery; Flavonoids; Humans; Neoplasms; Plants; Structure-Activity Relationship

2017
Small molecule adenosine 5'-monophosphate activated protein kinase (AMPK) modulators and human diseases.
    Journal of medicinal chemistry, 2015, Jan-08, Volume: 58, Issue:1

    Adenosine 5'-monophosphate activated protein kinase (AMPK) is a master sensor of cellular energy status that plays a key role in the regulation of whole-body energy homeostasis. AMPK is a serine/threonine kinase that is activated by upstream kinases LKB1, CaMKKβ, and Tak1, among others. AMPK exists as αβγ trimeric complexes that are allosterically regulated by AMP, ADP, and ATP. Dysregulation of AMPK has been implicated in a number of metabolic diseases including type 2 diabetes mellitus and obesity. Recent studies have associated roles of AMPK with the development of cancer and neurological disorders, making it a potential therapeutic target to treat human diseases. This review focuses on the structure and function of AMPK, its role in human diseases, and its direct substrates and provides a brief synopsis of key AMPK modulators and their relevance in human diseases.

    Topics: Adenine Nucleotides; Allosteric Regulation; AMP-Activated Protein Kinases; Humans; Intracellular Signaling Peptides and Proteins; Metabolic Diseases; Molecular Structure; Neoplasms; Protein Structure, Tertiary; Small Molecule Libraries

2015
Regulating the master regulator: Controlling heat shock factor 1 as a chemotherapy approach.
    Bioorganic & medicinal chemistry letters, 2015, Sep-01, Volume: 25, Issue:17

    Described is the role that heat shock factor 1 (HSF1) plays in regulating cellular stress. Focusing on the current state of the HSF1 field in chemotherapeutics we outline the cytoprotective role of HSF1 in the cell. Summarizing the mechanism by which HSF1 regulates the unfolded proteins that are generated under stress conditions provides the background on why HSF1, the master regulator, is such an important protein in cancer cell growth. Summarizing siRNA knockdown results and current inhibitors provides a comprehensive evaluation on HSF1 and its current state. One set of molecules stands out, in that they completely obliterate the levels of HSF1, while simultaneously inhibiting heat shock protein 90 (Hsp90). These molecules are extremely promising as chemotherapeutic agents and as tools that may ultimately provide the connection between Hsp90 inhibition and HSF1 protein levels.

    Topics: HSP90 Heat-Shock Proteins; Humans; Neoplasms; Transcription Factors

2015
6-Phosphogluconate dehydrogenase links oxidative PPP, lipogenesis and tumour growth by inhibiting LKB1-AMPK signalling.
    Nature cell biology, 2015, Volume: 17, Issue:11

    The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell proliferation and tumour growth. 6PGD-mediated production of ribulose-5-phosphate (Ru-5-P) inhibits AMPK activation by disrupting the active LKB1 complex, thereby activating acetyl-CoA carboxylase 1 and lipogenesis. Ru-5-P and NADPH are thought to be precursors in RNA biosynthesis and lipogenesis, respectively; thus, our findings provide an additional link between the oxidative PPP and lipogenesis through Ru-5-P-dependent inhibition of LKB1-AMPK signalling. Moreover, we identified and developed 6PGD inhibitors, physcion and its derivative S3, that effectively inhibited 6PGD, cancer cell proliferation and tumour growth in nude mice xenografts without obvious toxicity, suggesting that 6PGD could be an anticancer target.

    Topics: AMP-Activated Protein Kinase Kinases; AMP-Activated Protein Kinases; Humans; Lipogenesis; Neoplasms; Oxidative Stress; Pentose Phosphate Pathway; Phosphogluconate Dehydrogenase; Protein Serine-Threonine Kinases; Ribulosephosphates; Signal Transduction

2015
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
    Annual review of pharmacology and toxicology, 2000, Volume: 40

    In vertebrates, the glucuronidation of small lipophilic agents is catalyzed by the endoplasmic reticulum UDP-glucuronosyltransferases (UGTs). This metabolic pathway leads to the formation of water-soluble metabolites originating from normal dietary processes, cellular catabolism, or exposure to drugs and xenobiotics. This classic detoxification process, which led to the discovery nearly 50 years ago of the cosubstrate UDP-glucuronic acid (19), is now known to be carried out by 15 human UGTs. Characterization of the individual gene products using cDNA expression experiments has led to the identification of over 350 individual compounds that serve as substrates for this superfamily of proteins. This data, coupled with the introduction of sophisticated RNA detection techniques designed to elucidate patterns of gene expression of the UGT superfamily in human liver and extrahepatic tissues of the gastrointestinal tract, has aided in understanding the contribution of glucuronidation toward epithelial first-pass metabolism. In addition, characterization of the UGT1A locus and genetic studies directed at understanding the role of bilirubin glucuronidation and the biochemical basis of the clinical symptoms found in unconjugated hyperbilirubinemia have uncovered the structural gene polymorphisms associated with Crigler-Najjar's and Gilbert's syndrome. The role of the UGTs in metabolism and different disease states in humans is the topic of this review.

    Topics: Autoimmunity; Chromosome Mapping; Glucuronides; Glucuronosyltransferase; Humans; Hyperbilirubinemia; Neoplasms; Steroids; Terminology as Topic

2000

Other Studies

8 other study(ies) available for quercetin and Neoplasms

ArticleYear
Polyphenolic Phytochemicals in Cancer Prevention and Therapy: Bioavailability versus Bioefficacy.
    Journal of medicinal chemistry, 2017, 12-14, Volume: 60, Issue:23

    Natural polyphenols are organic chemicals which contain phenol units in their structures. They show antitumor properties. However, a key problem is their short half-life and low bioavailability under in vivo conditions. Still, definitively demonstrating the human benefits of isolated polyphenolic compounds (alone or in combination) using modern scientific methodology has proved challenging. The most common discrepancy between experimental and clinical observations is the use of nonphysiologically relevant concentrations of polyphenols in mechanistic studies. Thus, it remains highly controversial how applicable underlying mechanisms are with bioavailable concentrations and biological half-life. The present Perspective analyses proposed antitumor mechanisms, in vivo reported antitumor effects, and possible mechanisms that may explain discrepancies between bioavailability and bioefficacy. Polyphenol metabolism and possible toxic side effects are also considered. Our main conclusion emphasizes that these natural molecules (and their chemical derivatives) indeed can be very useful, not only as cancer chemopreventive agents but also in oncotherapy.

    Topics: Animals; Anticarcinogenic Agents; Antineoplastic Agents, Phytogenic; Biological Availability; Drug Delivery Systems; Humans; Neoplasms; Phytochemicals; Polyphenols

2017
Protective effects of kaempferol against reactive oxygen species-induced hemolysis and its antiproliferative activity on human cancer cells.
    European journal of medicinal chemistry, 2016, May-23, Volume: 114

    The protective effects of kaempferol against reactive oxygen species (ROS)-induced hemolysis and its antiproliferative activity on human cancer cells were evaluated in this study. Kaempferol exhibited strong cellular antioxidant ability (CAA) with a CAA value of 59.80 ± 0.379 μM of quercetin (QE)/100 μM (EC50 = 7.74 ± 0.049 μM). Pretreatment with kaempferol significantly attenuated the ROS-induced hemolysis of human erythrocyte (87.4% hemolysis suppressed at 100 μg/mL) and reduced the accumulation of toxic lipid peroxidation product malondialdehyde (MDA). The anti-hemolytic activity of kaempferol was mainly through scavenging excessive ROS and preserving the intrinsic antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) activities in normal levels. Additionally, kaempferol showed significant antiproliferative activity on a panel of human cancer cell lines including human breast carcinoma (MCF-7) cells, human stomach carcinoma (SGC-7901) cells, human cervical carcinoma (Hela) cells and human lung carcinoma (A549) cells. Kaemperol induced apoptosis of MCF-7 cells accompanied with nuclear condensation and mitochondria dysfunction.

    Topics: Antioxidants; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Erythrocytes; HeLa Cells; Hemolysis; Humans; Kaempferols; MCF-7 Cells; Molecular Structure; Neoplasms; Protective Agents; Reactive Oxygen Species; Structure-Activity Relationship

2016
Cytotoxic and antioxidant constituents from the leaves of Psidium guajava.
    Bioorganic & medicinal chemistry letters, 2015, Volume: 25, Issue:10

    Psidium guajava (Myrtaceae) is an evergreen shrub growing extensively throughout the tropical and subtropical areas. Four new compounds, guavinoside C, D, E and F (1-3, 10) were isolated from the leaves of P. guajava, along with six known ones (4-9). Their structures were elucidated by spectroscopic analysis. Compounds 1, 4 and 10 showed significant cytotoxic activities on HeLa, SGC-7901 and A549 cell lines, respectively. Compounds 1 and 4-10 showed antioxidant activities in DPPH, ABTS and FRAP assays, and five of them (1, 4-6, 10) exhibited stronger activities than that of vitamin C.

    Topics: Antineoplastic Agents; Antioxidants; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; HeLa Cells; Humans; Inhibitory Concentration 50; Magnetic Resonance Spectroscopy; Neoplasms; Plant Extracts; Plant Leaves; Psidium

2015
Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
    Journal of natural products, 2015, Nov-25, Volume: 78, Issue:11

    AKR1B10 is an NADPH-dependent reductase that plays an important function in several physiological reactions such as the conversion of retinal to retinol, reduction of isoprenyl aldehydes, and biotransformation of procarcinogens and drugs. A growing body of evidence points to the important role of the enzyme in the development of several types of cancer (e.g., breast, hepatocellular), in which it is highly overexpressed. AKR1B10 is regarded as a therapeutic target for the treatment of these diseases, and potent and specific inhibitors may be promising therapeutic agents. Several inhibitors of AKR1B10 have been described, but the area of natural plant products has been investigated sparingly. In the present study almost 40 diverse phenolic compounds and alkaloids were examined for their ability to inhibit the recombinant AKR1B10 enzyme. The most potent inhibitors-apigenin, luteolin, and 7-hydroxyflavone-were further characterized in terms of IC50, selectivity, and mode of action. Molecular docking studies were also conducted, which identified putative binding residues important for the interaction. In addition, cellular studies demonstrated a significant inhibition of the AKR1B10-mediated reduction of daunorubicin in intact cells by these inhibitors without a considerable cytotoxic effect. Although these compounds are moderately potent and selective inhibitors of AKR1B10, they constitute a new structural type of AKR1B10 inhibitor and may serve as a template for the development of better inhibitors.

    Topics: Aldehyde Reductase; Aldo-Keto Reductases; Apigenin; Daunorubicin; Enzyme Inhibitors; Flavones; Flavonoids; HCT116 Cells; Humans; Luteolin; Molecular Conformation; Molecular Structure; Neoplasms

2015
Low molecular weight phosphotyrosine protein phosphatases as emerging targets for the design of novel therapeutic agents.
    Journal of medicinal chemistry, 2012, Jan-12, Volume: 55, Issue:1

    Topics: Animals; Antineoplastic Agents; Antitubercular Agents; Diabetes Mellitus; Humans; Hypoglycemic Agents; Insulin Resistance; Isoenzymes; Models, Molecular; Molecular Targeted Therapy; Mycobacterium tuberculosis; Neoplasms; Protein Conformation; Protein Tyrosine Phosphatases; Proto-Oncogene Proteins

2012
Potential use of selective and nonselective Pim kinase inhibitors for cancer therapy.
    Journal of medicinal chemistry, 2012, Oct-11, Volume: 55, Issue:19

    Topics: Animals; Antineoplastic Agents; Humans; Isoenzymes; Neoplasms; Protein Conformation; Proto-Oncogene Proteins c-pim-1; Signal Transduction

2012
The lipogenesis pathway as a cancer target.
    Journal of medicinal chemistry, 2011, Aug-25, Volume: 54, Issue:16

    Topics: Acetyl-CoA Carboxylase; Animals; Antineoplastic Agents; ATP Citrate (pro-S)-Lyase; Biosynthetic Pathways; Fatty Acid Synthases; Fatty Acids; Humans; Lipogenesis; Models, Chemical; Molecular Structure; Neoplasms

2011
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    The identification of self-renewing and multipotent neural stem cells (NSCs) in the mammalian brain holds promise for the treatment of neurological diseases and has yielded new insight into brain cancer. However, the complete repertoire of signaling pathways that governs the proliferation and self-renewal of NSCs, which we refer to as the 'ground state', remains largely uncharacterized. Although the candidate gene approach has uncovered vital pathways in NSC biology, so far only a few highly studied pathways have been investigated. Based on the intimate relationship between NSC self-renewal and neurosphere proliferation, we undertook a chemical genetic screen for inhibitors of neurosphere proliferation in order to probe the operational circuitry of the NSC. The screen recovered small molecules known to affect neurotransmission pathways previously thought to operate primarily in the mature central nervous system; these compounds also had potent inhibitory effects on cultures enriched for brain cancer stem cells. These results suggest that clinically approved neuromodulators may remodel the mature central nervous system and find application in the treatment of brain cancer.

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007