pyrroles has been researched along with Pulmonary Arterial Hypertension in 24 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 0 (0.00) | 29.6817 |
2010's | 8 (33.33) | 24.3611 |
2020's | 16 (66.67) | 2.80 |
Authors | Studies |
---|---|
Arsalane, S; Guan, T; Jiang, SY; Jiang, X; Kim, D; Nicolls, MR; Pasupneti, S; Tamosiuniene, R; Tang, Q; Tian, W; Voelkel, NF | 1 |
Chapman, RW; Chun, D; Cipolla, D; Corboz, MR; Gauani, H; Li, Z; Malinin, V; Perkins, WR; Plaunt, AJ | 1 |
Bigby, TD; Breen, EC; Cannon, DT; Gilmore, NK; Gutierrez-Gonzalez, AK; Nogueira, L | 1 |
Hidaka, H; Maruyama, J; Maruyama, K; Naito, A; Sakao, S; Sanada, TJ; Shoji, H; Sumi, K; Tatsumi, K; Yoshida, Y; Zhang, E | 1 |
Anderson, SA; Chen, LY; Danner, RL; Dougherty, EJ; Elinoff, JM; Gairhe, S; Johnston, KA; Lu, M; Mazer, AJ; Nelson, JNH; Noguchi, A; Siddique, MAH; Solomon, MA; Solomon, SB; Sun, J; Vanderpool, RR; Wang, H; Wang, S; Yu, ZX; Zou, Y | 1 |
Ghofrani, HA; Grimminger, F; Hadzic, S; Kojonazarov, B; Schermuly, RT; Seeger, W; Weissmann, N | 1 |
Bogaard, HJ; Chaudhary, KR; Hansmann, G; Legchenko, E; Stewart, DJ; Sun, XQ | 1 |
Acoba, MG; Bigham, Z; Claypool, SM; Damarla, M; Huetsch, JC; Jiang, H; Kirsch, BJ; Kliment, C; Le, A; Servinsky, L; Shimoda, LA; Suresh, K; Zaldumbide, J | 1 |
Ding, Y; Huang, W; Kong, H; Liu, P; Peng, L; Tan, Q; Wang, H; Wang, J; Wang, Y; Xie, W; Yang, M; Yu, M; Zhou, H | 1 |
Fuchikami, C; Honda, Y; Kosugi, K; Kuramoto, K; Kuwano, K; Numakura, Y | 1 |
Adão, R; Bialesova, L; Brás-Silva, C; Kinsella, BT; Mendes-Ferreira, P; Mulvaney, EP; Reid, HM | 1 |
Andersen, A; Andersen, S; Axelsen, JB; Bogaard, HJ; da Silva Goncalves Bos, D; de Man, FS; Gomez-Puerto, MC; Goumans, MJ; Kurakula, K; Pan, X; Peters, EL; Schalij, I; Schiepers, REJ; Sun, XQ; Szulcek, R; van der Laarse, WJ; Vonk Noordegraaf, A | 1 |
Kikuchi, N; Kurosawa, R; Miyata, S; Nakata, T; Nogi, M; Omura, J; Satoh, K; Satoh, T; Shimokawa, H; Shindo, T; Siddique, MAH; Sunamura, S; Takeuchi, Y | 1 |
Higuchi, T; Inagaki, T; Masaki, T; Nakaoka, Y; Pearson, JT; Saito, S; Schwenke, DO; Shirai, M; Tsuchimochi, H; Umetani, K | 1 |
Kawakami, E; Miwa, H; Naito, A; Sakao, S; Sanada, TJ; Shoji, H; Suda, R; Tanabe, N; Tatsumi, K | 1 |
Banerjee, S; Clark, VR; Fishbein, G; Hong, J; Park, JF; Razee, A; Saddic, L; Umar, S; Williams, T | 1 |
Hata, A; Kato, F; Kobayashi, T; Miwa, H; Nishimura, R; Sakao, S; Sanada, TJ; Shiina, Y; Suzuki, H; Tanabe, N; Tatsumi, K; Voelkel, N; Yoshino, I | 1 |
Ben-Batalla, I; Caruso, P; Gall, H; Ghofrani, HA; Götz, E; Grimminger, F; Herpel, S; Kojonazarov, B; Lepper, C; Loges, S; Manaud, G; Morrell, NW; Novoyatleva, T; Perros, F; Presser, N; Rai, N; Schermuly, RT; Seeger, W; Shihan, M; Upton, PD; Veeroju, S; Weissmann, N; Wharton, J; Wilkins, M | 1 |
Bogaard, HJ; da Silva Gonçalves Bos, D; de Man, FS; de Raaf, MA; Dickhoff, C; Goumans, MJ; Guignabert, C; Happé, C; Herrmann, FE; Koolwijk, P; Kuiper, VP; Kurakula, K; Lodder, K; Pan, X; Rol, N; Schalij, I; Sun, XQ; Szulcek, R; Thuillet, R; Tu, L; van Nieuw Amerongen, GP; Vonk-Noordegraaf, A; Wollin, L | 1 |
Adorini, K; Brown, M; Habib, P; Joshua, F; McLean, A; Ng, B; Podgorski, M; Tjeuw, M | 1 |
Chesler, NC; Hacker, TA; Schmuck, EG; Schreier, DA; Wang, Z | 1 |
Carman, BL; Machado, R; Predescu, DN; Predescu, SA | 1 |
Bonini, MG; Castellon, M; Chen, J; Comhair, S; Erzurum, S; Machado, RF; Mao, M; Minshall, RD; Oliveira, SDS; Raj, JU; Silva, CLM | 1 |
Al-Mamun, ME; Aoki, J; Doi, T; Kano, K; Kikuchi, H; Kikuchi, N; Kurosawa, R; Matsumoto, Y; Miyata, S; Nogi, M; Numano, K; Omura, J; Oshima, Y; Saigusa, D; Satoh, K; Satoh, T; Shimokawa, H; Siddique, MAH; Sunamura, S; Uruno, A; Yamamoto, M | 1 |
2 review(s) available for pyrroles and Pulmonary Arterial Hypertension
Article | Year |
---|---|
The Role of Regulatory T Cells in Pulmonary Arterial Hypertension.
Topics: Animals; Autoimmunity; Endothelium, Vascular; Humans; Indoles; Pulmonary Arterial Hypertension; Pyrroles; Rats; Sex Characteristics; T-Lymphocytes, Regulatory; Vascular System Injuries | 2021 |
Plexiform Arteriopathy in Rodent Models of Pulmonary Arterial Hypertension.
Topics: Animals; Disease Models, Animal; Disease Progression; Humans; Hypoxia; Indoles; MAP Kinase Signaling System; Mice; Mice, Knockout; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats | 2019 |
22 other study(ies) available for pyrroles and Pulmonary Arterial Hypertension
Article | Year |
---|---|
Treprostinil palmitil inhibits the hemodynamic and histopathological changes in the pulmonary vasculature and heart in an animal model of pulmonary arterial hypertension.
Topics: Administration, Inhalation; Administration, Oral; Animals; Collagen; Disease Models, Animal; Epoprostenol; Heart; Hemodynamics; Hypoxia; Indoles; Male; Myocardium; Phosphodiesterase 5 Inhibitors; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; Sildenafil Citrate; Vascular Remodeling; Vasodilator Agents | 2022 |
Role of IL-33 receptor (ST2) deletion in diaphragm contractile and mitochondrial function in the Sugen5416/hypoxia model of pulmonary hypertension.
Topics: Animals; Diaphragm; Disease Models, Animal; Hypertension, Pulmonary; Hypoxia; Indoles; Interleukin-1 Receptor-Like 1 Protein; Mice; Mice, Inbred C57BL; Mice, Transgenic; Mitochondria; Mitochondrial Diseases; Muscle Contraction; Protein Kinase Inhibitors; Pulmonary Arterial Hypertension; Pyrroles | 2022 |
The Isoquinoline-Sulfonamide Compound H-1337 Attenuates SU5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Rats.
Topics: Animals; Cell Proliferation; Heart Ventricles; Humans; Hypoxia; Indoles; Isoquinolines; Lung; Male; Metabolome; Myosin Light Chains; Phosphorylation; Proto-Oncogene Proteins c-akt; Pulmonary Arterial Hypertension; Pyrroles; Rats, Sprague-Dawley; Sulfonamides; TOR Serine-Threonine Kinases; Vascular Remodeling | 2021 |
Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model.
Topics: Animals; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Humans; Hypertension, Pulmonary; Hypoxia; Indoles; Mineralocorticoid Receptor Antagonists; Pulmonary Arterial Hypertension; Pyrroles; Rats; Ventricular Dysfunction, Right | 2022 |
Reply to Bogaard
Topics: Animals; Emphysema; Hypertension, Pulmonary; Hypoxia; Indoles; Phenotype; Pulmonary Arterial Hypertension; Pyrroles; Rats | 2019 |
Emphysema Is-at the Most-Only a Mild Phenotype in the Sugen/Hypoxia Rat Model of Pulmonary Arterial Hypertension.
Topics: Animals; Emphysema; Hypertension, Pulmonary; Hypoxia; Indoles; Phenotype; Pulmonary Arterial Hypertension; Pyrroles; Rats | 2019 |
Regulation of mitochondrial fragmentation in microvascular endothelial cells isolated from the SU5416/hypoxia model of pulmonary arterial hypertension.
Topics: Angiogenesis Inhibitors; Animals; Calcium; Cells, Cultured; Endothelial Cells; Hypoxia; Indoles; Lung; Male; Mitochondria; Oxygen Consumption; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Wistar; Reactive Oxygen Species; Vascular Remodeling | 2019 |
Paeoniflorin Ameliorates Chronic Hypoxia/SU5416-Induced Pulmonary Arterial Hypertension by Inhibiting Endothelial-to-Mesenchymal Transition.
Topics: Animals; Cells, Cultured; Chronic Disease; Disease Models, Animal; Endothelial Cells; Epithelial-Mesenchymal Transition; Glucosides; Humans; Hypoxia; Indoles; Injections, Subcutaneous; Male; Monoterpenes; Oxygen; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Sprague-Dawley | 2020 |
The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetamides; Animals; Cell Proliferation; Collagen Type I; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Arterial Hypertension; Pyrazines; Pyrroles; Rats, Sprague-Dawley; Receptors, Epoprostenol; Systole; Vascular Remodeling | 2020 |
Efficacy of the thromboxane receptor antagonist NTP42 alone, or in combination with sildenafil, in the sugen/hypoxia-induced model of pulmonary arterial hypertension.
Topics: Angiogenesis Inhibitors; Animals; Drug Therapy, Combination; Hypoxia; Indoles; Male; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Wistar; Receptors, Thromboxane A2, Prostaglandin H2; Sildenafil Citrate; Treatment Outcome; Vasodilator Agents | 2020 |
Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
Topics: Animals; Clorgyline; Disease Models, Animal; Disease Progression; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Indoles; Monoamine Oxidase; Oxidative Stress; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats; Vascular Remodeling; Vascular Stiffness; Vasodilation | 2021 |
Identification of Celastrol as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension and Right Ventricular Failure Through Suppression of Bsg (Basigin)/CyPA (Cyclophilin A).
Topics: Animals; Antihypertensive Agents; Basigin; Cyclophilin A; Disease Models, Animal; Humans; Hypoxia; Indoles; Mice; Mice, Transgenic; Myocytes, Cardiac; Pentacyclic Triterpenes; Pulmonary Arterial Hypertension; Pyrroles; Rats; Triterpenes; Ventricular Dysfunction, Right | 2021 |
Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography.
Topics: Animals; Antihypertensive Agents; Coronary Angiography; Coronary Vessels; Disease Models, Animal; Endothelin Receptor Antagonists; Endothelin-1; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Monocrotaline; Predictive Value of Tests; Pulmonary Arterial Hypertension; Pyrimidines; Pyrroles; Rats, Sprague-Dawley; Severity of Illness Index; Sulfonamides; Synchrotrons; Vasodilation; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling | 2021 |
Metabolic remodeling in the right ventricle of rats with severe pulmonary arterial hypertension.
Topics: Animals; Citric Acid Cycle; Fatty Acids; Glucose; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Oxidation-Reduction; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2021 |
Transcriptomic Analysis of Right Ventricular Remodeling in Two Rat Models of Pulmonary Hypertension: Identification and Validation of Epithelial-to-Mesenchymal Transition in Human Right Ventricular Failure.
Topics: Aged; Aged, 80 and over; Angiogenesis Inhibitors; Animals; Disease Models, Animal; Epithelial-Mesenchymal Transition; Female; Gene Expression Profiling; Heart Failure; Heart Ventricles; Humans; Hypoxia; Indoles; Male; Middle Aged; Monocrotaline; Pulmonary Arterial Hypertension; Pyrroles; Rats; Real-Time Polymerase Chain Reaction; RNA-Seq; Transcriptome; Ventricular Dysfunction, Right; Ventricular Remodeling | 2021 |
Cell Tracking Suggests Pathophysiological and Therapeutic Role of Bone Marrow Cells in Sugen5416/Hypoxia Rat Model of Pulmonary Arterial Hypertension.
Topics: Angiogenesis Inhibitors; Animals; Bone Marrow Cells; Bone Marrow Transplantation; Cell Tracking; Disease Models, Animal; Female; Hypoxia; Indoles; Lung; Male; Neointima; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats; Transplantation Chimera; Vascular Remodeling | 2021 |
Deficiency of Axl aggravates pulmonary arterial hypertension via BMPR2.
Topics: Angiogenesis Inhibitors; Animals; Bone Morphogenetic Protein Receptors, Type II; Gene Expression Regulation; Indoles; Male; Monocrotaline; Pulmonary Arterial Hypertension; Pyrroles; Rats, Inbred WKY; Rats, Sprague-Dawley; Receptor Protein-Tyrosine Kinases | 2021 |
Nintedanib improves cardiac fibrosis but leaves pulmonary vascular remodelling unaltered in experimental pulmonary hypertension.
Topics: Adult; Animals; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Endothelial Cells; Extracellular Matrix; Female; Fibroblasts; Fibrosis; Humans; Indoles; Male; Myocardium; Protein Kinase Inhibitors; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; Vascular Remodeling; Ventricular Function, Right; Ventricular Remodeling; Young Adult | 2019 |
First Reported Case of Pulmonary Arterial Hypertension Secondary to Tofacitinib Treatment for Undifferentiated Arthritis.
Topics: Antirheumatic Agents; Arthritis; Humans; Piperidines; Pulmonary Arterial Hypertension; Pyrimidines; Pyrroles; Treatment Outcome | 2021 |
Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.
Topics: Animals; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mesenchymal Stem Cell Transplantation; Myocardial Contraction; Myocardium; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; Recovery of Function; Regeneration; Tissue Scaffolds; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling; von Willebrand Factor | 2019 |
Injury-Induced Shedding of Extracellular Vesicles Depletes Endothelial Cells of Cav-1 (Caveolin-1) and Enables TGF-β (Transforming Growth Factor-β)-Dependent Pulmonary Arterial Hypertension.
Topics: Adolescent; Adult; Aged; Animals; Bone Morphogenetic Protein Receptors, Type II; Case-Control Studies; Caveolin 1; Cell Proliferation; Disease Models, Animal; Endothelial Cells; Extracellular Vesicles; Female; Humans; Hypoxia; Indoles; Male; Mice, Inbred C57BL; Mice, Knockout; Middle Aged; Nitric Oxide Synthase Type III; Pulmonary Arterial Hypertension; Pyrroles; Rats, Sprague-Dawley; Signal Transduction; Smad Proteins; Transforming Growth Factor beta; Vascular Remodeling; Young Adult | 2019 |
Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension.
Topics: Animals; Cells, Cultured; Cytokines; Disease Models, Animal; Drug Evaluation, Preclinical; Energy Metabolism; High-Throughput Screening Assays; Humans; Hypoxia; Hypoxia-Inducible Factor 1, alpha Subunit; Indoles; Male; Metabolome; Mice; Mitochondria; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Naphthoquinones; NF-E2-Related Factor 2; NF-kappa B; Oxidative Stress; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats; Reactive Oxygen Species; Resorcinols; Transcription Factors | 2019 |