pyrroles has been researched along with Hypertrophy, Right Ventricular in 22 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (13.64) | 29.6817 |
2010's | 14 (63.64) | 24.3611 |
2020's | 5 (22.73) | 2.80 |
Authors | Studies |
---|---|
Bikou, O; Hadri, L; Hajjar, RJ; Sassi, Y | 1 |
Fuchikami, C; Honda, Y; Kosugi, K; Kuramoto, K; Kuwano, K; Numakura, Y | 1 |
Andersen, A; Andersen, S; Axelsen, JB; Bogaard, HJ; da Silva Goncalves Bos, D; de Man, FS; Gomez-Puerto, MC; Goumans, MJ; Kurakula, K; Pan, X; Peters, EL; Schalij, I; Schiepers, REJ; Sun, XQ; Szulcek, R; van der Laarse, WJ; Vonk Noordegraaf, A | 1 |
Higuchi, T; Inagaki, T; Masaki, T; Nakaoka, Y; Pearson, JT; Saito, S; Schwenke, DO; Shirai, M; Tsuchimochi, H; Umetani, K | 1 |
Kawakami, E; Miwa, H; Naito, A; Sakao, S; Sanada, TJ; Shoji, H; Suda, R; Tanabe, N; Tatsumi, K | 1 |
Baust, J; Chang, B; Goda, A; Goncharov, D; Goncharova, EA; Gorcsan, J; Kobir, A; Kudryashova, TV; Mora, AL; Pena, A; Ray, A; Vanderpool, R | 1 |
Melnyk, O; Shults, NV; Suzuki, YJ; Zungu-Edmondson, M | 1 |
Higuchi, M; Hikasa, Y; Leong, ZP; Okida, A; Yamano, Y | 1 |
Bansal, A; Bhardwaj, V; Chattopadhyay, P; Nehra, S; Saraswat, D | 1 |
Hikasa, Y; Leong, ZP | 1 |
Chesler, NC; Hacker, TA; Schmuck, EG; Schreier, DA; Wang, Z | 1 |
Barrier, M; Biardel, S; Bisserier, M; Bonnet, P; Bonnet, S; Breuils-Bonnet, S; Carter, S; Courchesne, A; Courture, C; Deshaies, Y; Lauzon-Joset, JF; Majka, SM; Meloche, J; Paulin, R; Picard, F; Provencher, S; Racine, C; Tremblay, É | 1 |
Bogaard, HJ; de Man, FS; de Raaf, MA; Gomez-Arroyo, J; Happé, C; Rol, N; Schalij, I; Voelkel, NF; Vonk-Noordegraaf, A; Westerhof, N | 1 |
Asmis, R; Barabutis, N; Barman, SA; Black, SM; Catravas, JD; Chen, F; Dimitropoulou, C; Fulton, DJ; Giannis, A; Han, W; Jonigk, D; Keri, G; Orfi, L; Rafikov, R; Rafikova, O; Ramesh, G; Stepp, DW; Su, Y; Szabadkai, I; Szantai-Kis, C; Wang, Y | 1 |
Abe, K; Hirano, K; Hirooka, Y; Kunita-Takanezawa, M; Kuwabara, Y; Oka, M; Sunagawa, K | 1 |
Abbate, A; Bogaard, HJ; Byron, PR; Farkas, L; Gomez-Arroyo, J; Kraskauskas, D; Mizuno, S; Sakagami, M; Syed, AA; Van Tassell, B; Voelkel, NF | 1 |
Chun, HJ; Comhair, SA; Erzurum, SC; Hu, X; Hwangbo, C; Ju, H; Kang, Y; Kim, J; McLean, DL; Mehrotra, D; Papangeli, I; Park, H | 1 |
Bardou, M; Dumas, M; Goirand, F; Guerard, P; Lirussi, F; Rakotoniaina, Z; Rochette, L | 1 |
Casserly, B; Choudhary, G; Harrington, EO; Klinger, JR; Mazer, JM; Rounds, S; Vang, A | 1 |
Ghofrani, HA; Grimminger, F; Kalymbetov, A; Kojonazarov, B; Kretschmer, A; Lang, M; Schermuly, RT; Seeger, W; Stasch, JP; Tian, X; Weissmann, N | 1 |
Abman, SH; Le Cras, TD; Markham, NE; Tuder, RM; Voelkel, NF | 1 |
Demura, Y; Scerbavicius, R; Taraseviciene-Stewart, L; Tuder, RM; Voelkel, NF | 1 |
22 other study(ies) available for pyrroles and Hypertrophy, Right Ventricular
Article | Year |
---|---|
Induction and Characterization of Pulmonary Hypertension in Mice using the Hypoxia/SU5416 Model.
Topics: Animals; Cell Hypoxia; Disease Models, Animal; Fibrosis; Heart Ventricles; Humans; Hydrogen-Ion Concentration; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Mice; Pulmonary Artery; Pulmonary Circulation; Pyrroles; Vascular Endothelial Growth Factor A; Vascular Remodeling; Ventricular Remodeling | 2020 |
The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetamides; Animals; Cell Proliferation; Collagen Type I; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Arterial Hypertension; Pyrazines; Pyrroles; Rats, Sprague-Dawley; Receptors, Epoprostenol; Systole; Vascular Remodeling | 2020 |
Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
Topics: Animals; Clorgyline; Disease Models, Animal; Disease Progression; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Indoles; Monoamine Oxidase; Oxidative Stress; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats; Vascular Remodeling; Vascular Stiffness; Vasodilation | 2021 |
Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography.
Topics: Animals; Antihypertensive Agents; Coronary Angiography; Coronary Vessels; Disease Models, Animal; Endothelin Receptor Antagonists; Endothelin-1; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Monocrotaline; Predictive Value of Tests; Pulmonary Arterial Hypertension; Pyrimidines; Pyrroles; Rats, Sprague-Dawley; Severity of Illness Index; Sulfonamides; Synchrotrons; Vasodilation; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling | 2021 |
Metabolic remodeling in the right ventricle of rats with severe pulmonary arterial hypertension.
Topics: Animals; Citric Acid Cycle; Fatty Acids; Glucose; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Oxidation-Reduction; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2021 |
Pharmacological Inhibition of mTOR Kinase Reverses Right Ventricle Remodeling and Improves Right Ventricle Structure and Function in Rats.
Topics: Animals; Cell Proliferation; Cell Survival; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Myocytes, Cardiac; Protein Kinase Inhibitors; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; TOR Serine-Threonine Kinases; Ventricular Remodeling | 2017 |
Natural reversal of pulmonary vascular remodeling and right ventricular remodeling in SU5416/hypoxia-treated Sprague-Dawley rats.
Topics: Animals; Blotting, Western; Fibrosis; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Lung; Male; Metabolomics; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Ventricular Remodeling | 2017 |
Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats.
Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Imatinib Mesylate; Indoles; Male; Monocrotaline; Nestin; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-raf; Pulmonary Artery; Pyrroles; Rats, Wistar; Receptor, Fibroblast Growth Factor, Type 1; Receptor, Platelet-Derived Growth Factor beta; Signal Transduction; Sunitinib; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Vascular Remodeling; Ventricular Function, Right; Ventricular Remodeling | 2018 |
Nanocurcumin-pyrroloquinoline formulation prevents hypertrophy-induced pathological damage by relieving mitochondrial stress in cardiomyocytes under hypoxic conditions.
Topics: Animals; Cell Survival; Cells, Cultured; Curcumin; Hypertrophy; Hypertrophy, Right Ventricular; Hypoxia; Male; Mitochondria; Myocytes, Cardiac; Pyrroles; Quinolines; Rats; Rats, Sprague-Dawley | 2017 |
Effects of toceranib compared with sorafenib on monocrotaline-induced pulmonary arterial hypertension and cardiopulmonary remodeling in rats.
Topics: Animals; Antihypertensive Agents; Arterial Pressure; Autophagy; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Monocrotaline; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pulmonary Artery; Pyrroles; Rats, Wistar; Signal Transduction; Sorafenib; Vascular Remodeling; Ventricular Function, Right; Ventricular Remodeling | 2018 |
Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.
Topics: Animals; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mesenchymal Stem Cell Transplantation; Myocardial Contraction; Myocardium; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; Recovery of Function; Regeneration; Tissue Scaffolds; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling; von Willebrand Factor | 2019 |
Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.
Topics: Adult; Aged; Animals; Apoptosis; Arterial Pressure; Bone Morphogenetic Protein Receptors, Type II; Case-Control Studies; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Female; Glycation End Products, Advanced; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Middle Aged; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; PPAR gamma; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Receptor for Advanced Glycation End Products; Receptors, Immunologic; RNA Interference; S100 Proteins; Signal Transduction; STAT3 Transcription Factor; Transfection; Up-Regulation | 2013 |
SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction.
Topics: Angiogenesis Inhibitors; Animals; Circadian Rhythm; Disease Models, Animal; Disease Progression; Echocardiography; Heart Ventricles; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Systole; Telemetry; Tunica Intima; Vascular Remodeling | 2014 |
NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling.
Topics: Adventitia; Animals; Antihypertensive Agents; Cell Movement; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Matrix; Familial Primary Pulmonary Hypertension; Fibroblasts; HEK293 Cells; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mice; Mice, Inbred C57BL; Monocrotaline; NADPH Oxidase 4; NADPH Oxidases; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Time Factors; Transfection; Up-Regulation | 2014 |
Novel dual endothelin receptor antagonist macitentan reverses severe pulmonary arterial hypertension in rats.
Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Severity of Illness Index; Sulfonamides; Time Factors; Vascular Endothelial Growth Factor A | 2014 |
Iloprost reverses established fibrosis in experimental right ventricular failure.
Topics: Animals; Collagen; Cyclic AMP-Dependent Protein Kinases; Echocardiography; Fibroblasts; Fibrosis; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Iloprost; Indoles; Male; Matrix Metalloproteinase 9; Microscopy, Phase-Contrast; Physical Conditioning, Animal; Procollagen; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Transforming Growth Factor beta1; Vasodilator Agents; Ventricular Function, Right | 2015 |
Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension.
Topics: Animals; Apelin; Arterioles; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Endothelial Cells; Fibroblast Growth Factor 2; Hemodynamics; Histone Deacetylase Inhibitors; Hydroxamic Acids; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Intercellular Signaling Peptides and Proteins; Male; MEF2 Transcription Factors; MicroRNAs; Monocrotaline; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; RNA Interference; RNA, Small Interfering; Transcription, Genetic | 2015 |
Celecoxib but not the combination of celecoxib+atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat.
Topics: Acetylcholine; Animals; Atorvastatin; Blotting, Western; Body Weight; Caspase 3; Celecoxib; Cyclooxygenase Inhibitors; Disease Progression; Drug Combinations; Hemodynamics; Heptanoic Acids; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Myocardium; Nitric Oxide Synthase Type III; Pulmonary Artery; Pyrazoles; Pyrroles; Rats; Rats, Wistar; Sulfonamides; Survival Analysis; Vasodilator Agents | 2008 |
C-type natriuretic peptide does not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade.
Topics: Animals; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Natriuretic Agents; Natriuretic Peptide, C-Type; Protein Kinase Inhibitors; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Vascular Endothelial Growth Factor | 2011 |
The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats.
Topics: Animals; Apoptosis; Blood Pressure; Blotting, Western; Caspase 3; Cell Proliferation; Cyclic GMP; Guanylate Cyclase; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Immunohistochemistry; Indoles; Lung; Male; Nitric Oxide Synthase Type III; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Pyrazoles; Pyrimidines; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfones; Time Factors; Treatment Outcome | 2012 |
Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure.
Topics: Angiography; Animals; Animals, Newborn; Birth Weight; Chronic Disease; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Pulmonary Alveoli; Pulmonary Artery; Pulmonary Circulation; Pyrroles; Rats; Rats, Sprague-Dawley; Receptor Protein-Tyrosine Kinases; Receptors, Growth Factor; Receptors, Vascular Endothelial Growth Factor; Stress, Physiological | 2002 |
N-acetylcysteine treatment protects against VEGF-receptor blockade-related emphysema.
Topics: Acetylcysteine; Animals; Apoptosis; Disease Models, Animal; Dose-Response Relationship, Drug; Emphysema; Heme Oxygenase-1; Hypertrophy, Right Ventricular; Indoles; Lung; Male; Oxidative Stress; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Vascular Endothelial Growth Factor | 2004 |