Page last updated: 2024-08-18

pyrroles and Hypertrophy, Right Ventricular

pyrroles has been researched along with Hypertrophy, Right Ventricular in 22 studies

Research

Studies (22)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (13.64)29.6817
2010's14 (63.64)24.3611
2020's5 (22.73)2.80

Authors

AuthorsStudies
Bikou, O; Hadri, L; Hajjar, RJ; Sassi, Y1
Fuchikami, C; Honda, Y; Kosugi, K; Kuramoto, K; Kuwano, K; Numakura, Y1
Andersen, A; Andersen, S; Axelsen, JB; Bogaard, HJ; da Silva Goncalves Bos, D; de Man, FS; Gomez-Puerto, MC; Goumans, MJ; Kurakula, K; Pan, X; Peters, EL; Schalij, I; Schiepers, REJ; Sun, XQ; Szulcek, R; van der Laarse, WJ; Vonk Noordegraaf, A1
Higuchi, T; Inagaki, T; Masaki, T; Nakaoka, Y; Pearson, JT; Saito, S; Schwenke, DO; Shirai, M; Tsuchimochi, H; Umetani, K1
Kawakami, E; Miwa, H; Naito, A; Sakao, S; Sanada, TJ; Shoji, H; Suda, R; Tanabe, N; Tatsumi, K1
Baust, J; Chang, B; Goda, A; Goncharov, D; Goncharova, EA; Gorcsan, J; Kobir, A; Kudryashova, TV; Mora, AL; Pena, A; Ray, A; Vanderpool, R1
Melnyk, O; Shults, NV; Suzuki, YJ; Zungu-Edmondson, M1
Higuchi, M; Hikasa, Y; Leong, ZP; Okida, A; Yamano, Y1
Bansal, A; Bhardwaj, V; Chattopadhyay, P; Nehra, S; Saraswat, D1
Hikasa, Y; Leong, ZP1
Chesler, NC; Hacker, TA; Schmuck, EG; Schreier, DA; Wang, Z1
Barrier, M; Biardel, S; Bisserier, M; Bonnet, P; Bonnet, S; Breuils-Bonnet, S; Carter, S; Courchesne, A; Courture, C; Deshaies, Y; Lauzon-Joset, JF; Majka, SM; Meloche, J; Paulin, R; Picard, F; Provencher, S; Racine, C; Tremblay, É1
Bogaard, HJ; de Man, FS; de Raaf, MA; Gomez-Arroyo, J; Happé, C; Rol, N; Schalij, I; Voelkel, NF; Vonk-Noordegraaf, A; Westerhof, N1
Asmis, R; Barabutis, N; Barman, SA; Black, SM; Catravas, JD; Chen, F; Dimitropoulou, C; Fulton, DJ; Giannis, A; Han, W; Jonigk, D; Keri, G; Orfi, L; Rafikov, R; Rafikova, O; Ramesh, G; Stepp, DW; Su, Y; Szabadkai, I; Szantai-Kis, C; Wang, Y1
Abe, K; Hirano, K; Hirooka, Y; Kunita-Takanezawa, M; Kuwabara, Y; Oka, M; Sunagawa, K1
Abbate, A; Bogaard, HJ; Byron, PR; Farkas, L; Gomez-Arroyo, J; Kraskauskas, D; Mizuno, S; Sakagami, M; Syed, AA; Van Tassell, B; Voelkel, NF1
Chun, HJ; Comhair, SA; Erzurum, SC; Hu, X; Hwangbo, C; Ju, H; Kang, Y; Kim, J; McLean, DL; Mehrotra, D; Papangeli, I; Park, H1
Bardou, M; Dumas, M; Goirand, F; Guerard, P; Lirussi, F; Rakotoniaina, Z; Rochette, L1
Casserly, B; Choudhary, G; Harrington, EO; Klinger, JR; Mazer, JM; Rounds, S; Vang, A1
Ghofrani, HA; Grimminger, F; Kalymbetov, A; Kojonazarov, B; Kretschmer, A; Lang, M; Schermuly, RT; Seeger, W; Stasch, JP; Tian, X; Weissmann, N1
Abman, SH; Le Cras, TD; Markham, NE; Tuder, RM; Voelkel, NF1
Demura, Y; Scerbavicius, R; Taraseviciene-Stewart, L; Tuder, RM; Voelkel, NF1

Other Studies

22 other study(ies) available for pyrroles and Hypertrophy, Right Ventricular

ArticleYear
Induction and Characterization of Pulmonary Hypertension in Mice using the Hypoxia/SU5416 Model.
    Journal of visualized experiments : JoVE, 2020, 06-03, Issue:160

    Topics: Animals; Cell Hypoxia; Disease Models, Animal; Fibrosis; Heart Ventricles; Humans; Hydrogen-Ion Concentration; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Mice; Pulmonary Artery; Pulmonary Circulation; Pyrroles; Vascular Endothelial Growth Factor A; Vascular Remodeling; Ventricular Remodeling

2020
The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats.
    PloS one, 2020, Volume: 15, Issue:10

    Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Acetamides; Animals; Cell Proliferation; Collagen Type I; Disease Models, Animal; Heart Ventricles; Hemodynamics; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Arterial Hypertension; Pyrazines; Pyrroles; Rats, Sprague-Dawley; Receptors, Epoprostenol; Systole; Vascular Remodeling

2020
Increased MAO-A Activity Promotes Progression of Pulmonary Arterial Hypertension.
    American journal of respiratory cell and molecular biology, 2021, Volume: 64, Issue:3

    Topics: Animals; Clorgyline; Disease Models, Animal; Disease Progression; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Indoles; Monoamine Oxidase; Oxidative Stress; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats; Vascular Remodeling; Vascular Stiffness; Vasodilation

2021
Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography.
    American journal of physiology. Heart and circulatory physiology, 2021, 03-01, Volume: 320, Issue:3

    Topics: Animals; Antihypertensive Agents; Coronary Angiography; Coronary Vessels; Disease Models, Animal; Endothelin Receptor Antagonists; Endothelin-1; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Monocrotaline; Predictive Value of Tests; Pulmonary Arterial Hypertension; Pyrimidines; Pyrroles; Rats, Sprague-Dawley; Severity of Illness Index; Sulfonamides; Synchrotrons; Vasodilation; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling

2021
Metabolic remodeling in the right ventricle of rats with severe pulmonary arterial hypertension.
    Molecular medicine reports, 2021, Volume: 23, Issue:4

    Topics: Animals; Citric Acid Cycle; Fatty Acids; Glucose; Heart Ventricles; Humans; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Oxidation-Reduction; Pulmonary Arterial Hypertension; Pyrroles; Rats; Rats, Sprague-Dawley; Ventricular Remodeling

2021
Pharmacological Inhibition of mTOR Kinase Reverses Right Ventricle Remodeling and Improves Right Ventricle Structure and Function in Rats.
    American journal of respiratory cell and molecular biology, 2017, Volume: 57, Issue:5

    Topics: Animals; Cell Proliferation; Cell Survival; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Myocytes, Cardiac; Protein Kinase Inhibitors; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; TOR Serine-Threonine Kinases; Ventricular Remodeling

2017
Natural reversal of pulmonary vascular remodeling and right ventricular remodeling in SU5416/hypoxia-treated Sprague-Dawley rats.
    PloS one, 2017, Volume: 12, Issue:8

    Topics: Animals; Blotting, Western; Fibrosis; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Lung; Male; Metabolomics; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Ventricular Remodeling

2017
Reversal effects of low-dose imatinib compared with sunitinib on monocrotaline-induced pulmonary and right ventricular remodeling in rats.
    Vascular pharmacology, 2018, Volume: 100

    Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation; Heart Ventricles; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Imatinib Mesylate; Indoles; Male; Monocrotaline; Nestin; Protein Kinase Inhibitors; Proto-Oncogene Proteins c-raf; Pulmonary Artery; Pyrroles; Rats, Wistar; Receptor, Fibroblast Growth Factor, Type 1; Receptor, Platelet-Derived Growth Factor beta; Signal Transduction; Sunitinib; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-2; Vascular Remodeling; Ventricular Function, Right; Ventricular Remodeling

2018
Nanocurcumin-pyrroloquinoline formulation prevents hypertrophy-induced pathological damage by relieving mitochondrial stress in cardiomyocytes under hypoxic conditions.
    Experimental & molecular medicine, 2017, 12-01, Volume: 49, Issue:12

    Topics: Animals; Cell Survival; Cells, Cultured; Curcumin; Hypertrophy; Hypertrophy, Right Ventricular; Hypoxia; Male; Mitochondria; Myocytes, Cardiac; Pyrroles; Quinolines; Rats; Rats, Sprague-Dawley

2017
Effects of toceranib compared with sorafenib on monocrotaline-induced pulmonary arterial hypertension and cardiopulmonary remodeling in rats.
    Vascular pharmacology, 2018, Volume: 110

    Topics: Animals; Antihypertensive Agents; Arterial Pressure; Autophagy; Disease Models, Animal; Dose-Response Relationship, Drug; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Monocrotaline; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pulmonary Artery; Pyrroles; Rats, Wistar; Signal Transduction; Sorafenib; Vascular Remodeling; Ventricular Function, Right; Ventricular Remodeling

2018
Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats.
    American journal of physiology. Heart and circulatory physiology, 2019, 05-01, Volume: 316, Issue:5

    Topics: Animals; Arterial Pressure; Cells, Cultured; Disease Models, Animal; Fibrosis; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mesenchymal Stem Cell Transplantation; Myocardial Contraction; Myocardium; Pulmonary Arterial Hypertension; Pulmonary Artery; Pyrroles; Rats, Sprague-Dawley; Recovery of Function; Regeneration; Tissue Scaffolds; Ventricular Dysfunction, Right; Ventricular Function, Right; Ventricular Remodeling; von Willebrand Factor

2019
Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.
    Journal of the American Heart Association, 2013, Jan-16, Volume: 2, Issue:1

    Topics: Adult; Aged; Animals; Apoptosis; Arterial Pressure; Bone Morphogenetic Protein Receptors, Type II; Case-Control Studies; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Female; Glycation End Products, Advanced; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Middle Aged; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; PPAR gamma; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Receptor for Advanced Glycation End Products; Receptors, Immunologic; RNA Interference; S100 Proteins; Signal Transduction; STAT3 Transcription Factor; Transfection; Up-Regulation

2013
SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction.
    The European respiratory journal, 2014, Volume: 44, Issue:1

    Topics: Angiogenesis Inhibitors; Animals; Circadian Rhythm; Disease Models, Animal; Disease Progression; Echocardiography; Heart Ventricles; Hemodynamics; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Systole; Telemetry; Tunica Intima; Vascular Remodeling

2014
NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling.
    Arteriosclerosis, thrombosis, and vascular biology, 2014, Volume: 34, Issue:8

    Topics: Adventitia; Animals; Antihypertensive Agents; Cell Movement; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Matrix; Familial Primary Pulmonary Hypertension; Fibroblasts; HEK293 Cells; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mice; Mice, Inbred C57BL; Monocrotaline; NADPH Oxidase 4; NADPH Oxidases; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Time Factors; Transfection; Up-Regulation

2014
Novel dual endothelin receptor antagonist macitentan reverses severe pulmonary arterial hypertension in rats.
    Journal of cardiovascular pharmacology, 2014, Volume: 64, Issue:5

    Topics: Animals; Disease Models, Animal; Dose-Response Relationship, Drug; Endothelin A Receptor Antagonists; Endothelin B Receptor Antagonists; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Indoles; Male; Pyrimidines; Pyrroles; Rats; Rats, Sprague-Dawley; Severity of Illness Index; Sulfonamides; Time Factors; Vascular Endothelial Growth Factor A

2014
Iloprost reverses established fibrosis in experimental right ventricular failure.
    The European respiratory journal, 2015, Volume: 45, Issue:2

    Topics: Animals; Collagen; Cyclic AMP-Dependent Protein Kinases; Echocardiography; Fibroblasts; Fibrosis; Heart Ventricles; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Iloprost; Indoles; Male; Matrix Metalloproteinase 9; Microscopy, Phase-Contrast; Physical Conditioning, Animal; Procollagen; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; RNA, Messenger; Transforming Growth Factor beta1; Vasodilator Agents; Ventricular Function, Right

2015
Restoration of impaired endothelial myocyte enhancer factor 2 function rescues pulmonary arterial hypertension.
    Circulation, 2015, Jan-13, Volume: 131, Issue:2

    Topics: Animals; Apelin; Arterioles; Cells, Cultured; Disease Models, Animal; Drug Evaluation, Preclinical; Endothelial Cells; Fibroblast Growth Factor 2; Hemodynamics; Histone Deacetylase Inhibitors; Hydroxamic Acids; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Intercellular Signaling Peptides and Proteins; Male; MEF2 Transcription Factors; MicroRNAs; Monocrotaline; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; RNA Interference; RNA, Small Interfering; Transcription, Genetic

2015
Celecoxib but not the combination of celecoxib+atorvastatin prevents the development of monocrotaline-induced pulmonary hypertension in the rat.
    Naunyn-Schmiedeberg's archives of pharmacology, 2008, Volume: 378, Issue:3

    Topics: Acetylcholine; Animals; Atorvastatin; Blotting, Western; Body Weight; Caspase 3; Celecoxib; Cyclooxygenase Inhibitors; Disease Progression; Drug Combinations; Hemodynamics; Heptanoic Acids; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Male; Monocrotaline; Myocardium; Nitric Oxide Synthase Type III; Pulmonary Artery; Pyrazoles; Pyrroles; Rats; Rats, Wistar; Sulfonamides; Survival Analysis; Vasodilator Agents

2008
C-type natriuretic peptide does not attenuate the development of pulmonary hypertension caused by hypoxia and VEGF receptor blockade.
    Life sciences, 2011, Sep-26, Volume: 89, Issue:13-14

    Topics: Animals; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Male; Natriuretic Agents; Natriuretic Peptide, C-Type; Protein Kinase Inhibitors; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Vascular Endothelial Growth Factor

2011
The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats.
    PloS one, 2012, Volume: 7, Issue:8

    Topics: Animals; Apoptosis; Blood Pressure; Blotting, Western; Caspase 3; Cell Proliferation; Cyclic GMP; Guanylate Cyclase; Hemodynamics; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Immunohistochemistry; Indoles; Lung; Male; Nitric Oxide Synthase Type III; Phosphodiesterase 5 Inhibitors; Piperazines; Purines; Pyrazoles; Pyrimidines; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Sildenafil Citrate; Soluble Guanylyl Cyclase; Sulfones; Time Factors; Treatment Outcome

2012
Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure.
    American journal of physiology. Lung cellular and molecular physiology, 2002, Volume: 283, Issue:3

    Topics: Angiography; Animals; Animals, Newborn; Birth Weight; Chronic Disease; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Lung; Pulmonary Alveoli; Pulmonary Artery; Pulmonary Circulation; Pyrroles; Rats; Rats, Sprague-Dawley; Receptor Protein-Tyrosine Kinases; Receptors, Growth Factor; Receptors, Vascular Endothelial Growth Factor; Stress, Physiological

2002
N-acetylcysteine treatment protects against VEGF-receptor blockade-related emphysema.
    COPD, 2004, Volume: 1, Issue:1

    Topics: Acetylcysteine; Animals; Apoptosis; Disease Models, Animal; Dose-Response Relationship, Drug; Emphysema; Heme Oxygenase-1; Hypertrophy, Right Ventricular; Indoles; Lung; Male; Oxidative Stress; Pyrroles; Rats; Rats, Sprague-Dawley; Receptors, Vascular Endothelial Growth Factor

2004