Page last updated: 2024-08-18

pyrroles and Heritable Pulmonary Arterial Hypertension

pyrroles has been researched along with Heritable Pulmonary Arterial Hypertension in 13 studies

Research

Studies (13)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's12 (92.31)24.3611
2020's1 (7.69)2.80

Authors

AuthorsStudies
Anderson, SA; Chen, LY; Danner, RL; Dougherty, EJ; Elinoff, JM; Gairhe, S; Johnston, KA; Lu, M; Mazer, AJ; Nelson, JNH; Noguchi, A; Siddique, MAH; Solomon, MA; Solomon, SB; Sun, J; Vanderpool, RR; Wang, H; Wang, S; Yu, ZX; Zou, Y1
Baal, N; Dorfmuller, P; Ghofrani, HA; Grimminger, F; Jonigk, D; Kojonazarov, B; Neubauer, MC; Neubert, L; Pullamsetti, SS; Ruppert, C; Schermuly, RT; Schlueter, BC; Seeger, W; Weiss, A; Weissmann, N; Yerabolu, D1
Barrier, M; Biardel, S; Bisserier, M; Bonnet, P; Bonnet, S; Breuils-Bonnet, S; Carter, S; Courchesne, A; Courture, C; Deshaies, Y; Lauzon-Joset, JF; Majka, SM; Meloche, J; Paulin, R; Picard, F; Provencher, S; Racine, C; Tremblay, É1
Cai, S; Fu, Z; Hu, J; Huang, C; Liedtke, W; Paudel, O; Sham, JS; Xia, Y1
Abraham, D; Baliga, R; Denton, CP; Derrett-Smith, EC; Dooley, A; Gilbane, AJ; Hobbs, AJ; Holmes, AM; Khan, K; Trinder, SL1
Aboagye, EO; Ashek, A; Barnes, G; Cotroneo, E; Cupitt, J; Dabral, S; Dubois, O; El-Bahrawy, MA; Fang, W; Gibbs, JS; Gsell, W; He, JG; Howard, LS; Jones, H; Nguyen, QD; Pullamsetti, SS; Tomasi, G; Wang, L; Wilkins, MR; Zhao, L1
Ciuclan, L; Dong, L; Dubois, G; Duggan, N; Edwards, M; England, K; Hussey, M; Jarai, G; Morrell, NW; Sheppard, K; Simmons, J; Sutton, D; Thomas, M; Van Heeke, G1
Chesler, NC; Eickhoff, JC; Golob, M; Lakes, RS; Wang, Z1
Abe, K; Alzoubi, A; Gairhe, S; Matsumoto, Y; McMurtry, IF; O'Neill, KD; Oka, M; Oshima, K; Toba, M1
Alhussaini, AA; Cool, CD; Farkas, D; Farkas, L; Kraskauskas, D; Kraskauskiene, V; Natarajan, R; Nicolls, MR1
Asmis, R; Barabutis, N; Barman, SA; Black, SM; Catravas, JD; Chen, F; Dimitropoulou, C; Fulton, DJ; Giannis, A; Han, W; Jonigk, D; Keri, G; Orfi, L; Rafikov, R; Rafikova, O; Ramesh, G; Stepp, DW; Su, Y; Szabadkai, I; Szantai-Kis, C; Wang, Y1
Cheng, XS; Gu, Q; He, JG; Liu, ZH; Ni, XH; Shan, GL; Wilkins, MR; Xiong, CM; Xue, F; Zeng, WJ; Zhao, L; Zhao, ZH1
Baumann, C; Dahal, BK; Davie, N; Evans, S; Fairman, D; Ghofrani, HA; Grimminger, F; Kilty, I; Kojonazarov, B; Kosanovic, D; Luitel, H; Majewski, M; Phillips, P; Pullamsetti, SS; Schermuly, RT; Seeger, W; Sydykov, A; Tian, X; Wayman, C; Weissmann, N1

Trials

2 trial(s) available for pyrroles and Heritable Pulmonary Arterial Hypertension

ArticleYear
Heterogeneity in lung (18)FDG uptake in pulmonary arterial hypertension: potential of dynamic (18)FDG positron emission tomography with kinetic analysis as a bridging biomarker for pulmonary vascular remodeling targeted treatments.
    Circulation, 2013, Sep-10, Volume: 128, Issue:11

    Topics: Adult; Aged; Animals; Benzamides; Cell Division; Dichloroacetic Acid; Disease Models, Animal; Drug Monitoring; Familial Primary Pulmonary Hypertension; Female; Fibroblasts; Fluorine Radioisotopes; Fluorodeoxyglucose F18; Gene Expression Profiling; Glycolysis; Humans; Hypertension, Pulmonary; Imatinib Mesylate; Indoles; Lung; Male; Middle Aged; Monocrotaline; Piperazines; Positron-Emission Tomography; Protein Kinase Inhibitors; Pyrimidines; Pyrroles; Radiopharmaceuticals; Rats; Rats, Sprague-Dawley; Sunitinib; Young Adult

2013
Atorvastatin in pulmonary arterial hypertension (APATH) study.
    The European respiratory journal, 2012, Volume: 40, Issue:1

    Topics: Adolescent; Adult; Aged; Anticholesteremic Agents; Atorvastatin; Cholesterol, LDL; Double-Blind Method; Exercise Tolerance; Familial Primary Pulmonary Hypertension; Female; Hemodynamics; Heptanoic Acids; Humans; Hypertension, Pulmonary; Lung; Male; Middle Aged; Pyrroles; Treatment Outcome; Walking; Young Adult

2012

Other Studies

11 other study(ies) available for pyrroles and Heritable Pulmonary Arterial Hypertension

ArticleYear
Mineralocorticoid receptor antagonist treatment of established pulmonary arterial hypertension improves interventricular dependence in the SU5416-hypoxia rat model.
    American journal of physiology. Lung cellular and molecular physiology, 2022, 03-01, Volume: 322, Issue:3

    Topics: Animals; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Humans; Hypertension, Pulmonary; Hypoxia; Indoles; Mineralocorticoid Receptor Antagonists; Pulmonary Arterial Hypertension; Pyrroles; Rats; Ventricular Dysfunction, Right

2022
Targeting cyclin-dependent kinases for the treatment of pulmonary arterial hypertension.
    Nature communications, 2019, 05-17, Volume: 10, Issue:1

    Topics: Animals; Cell Line; Cyclin-Dependent Kinases; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Humans; Indoles; Lung; Male; Mice; Mice, Inbred C57BL; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Piperazines; Protein Kinase Inhibitors; Pulmonary Artery; Pyridines; Pyrroles; Rats; Rats, Inbred WKY; Rats, Sprague-Dawley; Treatment Outcome

2019
Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.
    Journal of the American Heart Association, 2013, Jan-16, Volume: 2, Issue:1

    Topics: Adult; Aged; Animals; Apoptosis; Arterial Pressure; Bone Morphogenetic Protein Receptors, Type II; Case-Control Studies; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Familial Primary Pulmonary Hypertension; Female; Glycation End Products, Advanced; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Middle Aged; Monocrotaline; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; PPAR gamma; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Receptor for Advanced Glycation End Products; Receptors, Immunologic; RNA Interference; S100 Proteins; Signal Transduction; STAT3 Transcription Factor; Transfection; Up-Regulation

2013
TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension.
    American journal of physiology. Cell physiology, 2013, Oct-01, Volume: 305, Issue:7

    Topics: Animals; Calcium Signaling; Chronic Disease; Disease Models, Animal; Dose-Response Relationship, Drug; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Hypoxia; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Morpholines; Pulmonary Artery; Pyrroles; Serotonin; Sulfonamides; Time Factors; TRPV Cation Channels; Vasoconstriction; Vasoconstrictor Agents

2013
Endothelial injury in a transforming growth factor β-dependent mouse model of scleroderma induces pulmonary arterial hypertension.
    Arthritis and rheumatism, 2013, Volume: 65, Issue:11

    Topics: Angiogenesis Inhibitors; Animals; Disease Models, Animal; Endothelium, Vascular; Familial Primary Pulmonary Hypertension; Female; Hypertension, Pulmonary; Hypoxia; Indoles; Lac Operon; Male; Mice; Mice, Transgenic; Phenotype; Protein Serine-Threonine Kinases; Pulmonary Circulation; Pyrroles; Receptor, Transforming Growth Factor-beta Type II; Receptors, Transforming Growth Factor beta; Receptors, Vascular Endothelial Growth Factor; Scleroderma, Systemic; Signal Transduction; Transforming Growth Factor beta

2013
Treatment with anti-gremlin 1 antibody ameliorates chronic hypoxia/SU5416-induced pulmonary arterial hypertension in mice.
    The American journal of pathology, 2013, Volume: 183, Issue:5

    Topics: Animals; Antibodies, Monoclonal; Bone Morphogenetic Proteins; Chronic Disease; Familial Primary Pulmonary Hypertension; Heart Ventricles; HEK293 Cells; Hemodynamics; Humans; Hypertension, Pulmonary; Hypoxia; Indoles; Intercellular Signaling Peptides and Proteins; Lung; Mice; Pyrroles; Signal Transduction

2013
Changes in large pulmonary arterial viscoelasticity in chronic pulmonary hypertension.
    PloS one, 2013, Volume: 8, Issue:11

    Topics: Angiogenesis Inhibitors; Animals; Blood Pressure; Chronic Disease; Collagen; Elastic Modulus; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Hypoxia; Indoles; Male; Mice; Mice, Inbred C57BL; Myocytes, Smooth Muscle; Proteoglycans; Pyrroles; Stress, Mechanical; Vascular Stiffness; Ventricular Dysfunction, Right; Viscosity

2013
Temporal hemodynamic and histological progression in Sugen5416/hypoxia/normoxia-exposed pulmonary arterial hypertensive rats.
    American journal of physiology. Heart and circulatory physiology, 2014, Jan-15, Volume: 306, Issue:2

    Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Angiogenesis Inhibitors; Animals; Familial Primary Pulmonary Hypertension; Hemodynamics; Hypertension, Pulmonary; Hypoxia; Indoles; Male; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Vasodilator Agents

2014
Nuclear factor κB inhibition reduces lung vascular lumen obliteration in severe pulmonary hypertension in rats.
    American journal of respiratory cell and molecular biology, 2014, Volume: 51, Issue:3

    Topics: Animals; Apoptosis; CD4-Positive T-Lymphocytes; Familial Primary Pulmonary Hypertension; Humans; Hypertension, Pulmonary; Hypoxia; Indoles; Inflammation; Interleukin-6; Leukocyte Common Antigens; Lung; NF-kappa B; Pulmonary Artery; Pyrroles; Pyrrolidines; Rats; Signal Transduction; Thiocarbamates; Time Factors

2014
NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling.
    Arteriosclerosis, thrombosis, and vascular biology, 2014, Volume: 34, Issue:8

    Topics: Adventitia; Animals; Antihypertensive Agents; Cell Movement; Cell Proliferation; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Extracellular Matrix; Familial Primary Pulmonary Hypertension; Fibroblasts; HEK293 Cells; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indoles; Male; Mice; Mice, Inbred C57BL; Monocrotaline; NADPH Oxidase 4; NADPH Oxidases; Pulmonary Artery; Pyrroles; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Signal Transduction; Time Factors; Transfection; Up-Regulation

2014
Effects of multikinase inhibitors on pressure overload-induced right ventricular remodeling.
    International journal of cardiology, 2013, Sep-10, Volume: 167, Issue:6

    Topics: Animals; Dose-Response Relationship, Drug; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Indoles; Niacinamide; Phenylurea Compounds; Protein Kinase Inhibitors; Pyrroles; Random Allocation; Rats; Rats, Sprague-Dawley; Sorafenib; Sunitinib; Ventricular Function, Right; Ventricular Remodeling

2013