pyrimidinones and Weight-Loss

pyrimidinones has been researched along with Weight-Loss* in 4 studies

Other Studies

4 other study(ies) available for pyrimidinones and Weight-Loss

ArticleYear
A Novel Selective Inhibitor of Delta-5 Desaturase Lowers Insulin Resistance and Reduces Body Weight in Diet-Induced Obese C57BL/6J Mice.
    PloS one, 2016, Volume: 11, Issue:11

    Obesity is now recognized as a state of chronic low-grade inflammation and is called as metabolic inflammation. Delta-5 desaturase (D5D) is an enzyme that metabolizes dihomo-γ-linolenic acid (DGLA) to arachidonic acid (AA). Thus, D5D inhibition increases DGLA (precursor to anti-inflammatory eicosanoids) while decreasing AA (precursor to pro-inflammatory eicosanoids), and could result in synergistic improvement in the low-grade inflammatory state. Here, we demonstrate reduced insulin resistance and the anti-obesity effect of a D5D selective inhibitor (compound-326), an orally active small-molecule, in a high-fat diet-induced obese (DIO) mouse model. In vivo D5D inhibition was confirmed by determining changes in blood AA/DGLA profiles. In DIO mice, chronic treatment with compound-326 lowered insulin resistance and caused body weight loss without significant impact on cumulative calorie intake. Decreased macrophage infiltration into adipose tissue was expected from mRNA analysis. Increased daily energy expenditure was also observed following administration of compound-326, in line with sustained body weight loss. These data indicate that the novel D5D selective inhibitor, compound-326, will be a new class of drug for the treatment of obese and diabetic patients.

    Topics: 8,11,14-Eicosatrienoic Acid; Adiponectin; Adipose Tissue; Animals; Arachidonic Acid; Body Weight; Delta-5 Fatty Acid Desaturase; Diet, High-Fat; Energy Metabolism; Enzyme Inhibitors; Fatty Acid Desaturases; Gene Expression; Hep G2 Cells; Humans; Inflammation; Insulin Resistance; Leptin; Macrophages; Male; Mice, Inbred C57BL; Obesity; Pyrimidinones; Pyrrolidinones; Reverse Transcriptase Polymerase Chain Reaction; Weight Loss

2016
Effects of a specific MCHR1 antagonist (GW803430) on energy budget and glucose metabolism in diet-induced obese mice.
    Obesity (Silver Spring, Md.), 2014, Volume: 22, Issue:3

    The melanin-concentrating hormone (MCH) is a centrally acting peptide implicated in the regulation of energy homeostasis and body weight, although its role in glucose homeostasis is uncertain. Our objective was to determine effects of MCHR1 antagonism on energy budgets and glucose homeostasis in mice.. Effects of chronic oral administration of a specific MCHR1 antagonist (GW803430) on energy budgets and glucose homeostasis in diet-induced obese (DIO) C57BL/6J mice were examined.. Oral administration of GW803430 for 30 days reduced food intake, body weight, and body fat. Circulating leptin and triglycerides were reduced but insulin and nonesterified fatty acids were unaffected. Despite weight loss there was no improvement in glucose homeostasis (insulin levels and intraperitoneal glucose tolerance tests). On day 4-6, mice receiving MCHR1 antagonist exhibited decreased metabolisable energy intake and increased daily energy expenditure. However these effects had disappeared by day 22-24. Physical activity during the dark phase was increased by MCHR1 antagonist treatment throughout the 30-day treatment.. GW803430 produced a persistent anti-obesity effect due to both a decrease in energy intake and an increase in energy expenditure via physical activity but did not improve glucose homeostasis.

    Topics: Absorptiometry, Photon; Adipose Tissue; Administration, Oral; Animals; Body Mass Index; Diet, High-Fat; Energy Intake; Energy Metabolism; Glucose; Glucose Tolerance Test; Homeostasis; Insulin; Leptin; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Motor Activity; Obesity; Pyrimidinones; Receptors, Somatostatin; Thiophenes; Triglycerides; Weight Loss

2014
Metabolic and neurologic consequences of chronic lopinavir/ritonavir administration to C57BL/6 mice.
    Antiviral research, 2010, Volume: 88, Issue:3

    It is well established that HIV antiretroviral drugs, particularly protease inhibitors, frequently elicit a metabolic syndrome that may include hyperlipidemia, lipodystrophy, and insulin resistance. Metabolic dysfunction in non-HIV-infected subjects has been repeatedly associated with cognitive impairment in epidemiological and experimental studies, but it is not yet understood if antiretroviral therapy-induced metabolic syndrome might contribute to HIV-associated neurologic decline. To determine if protease inhibitor-induced metabolic dysfunction in mice is accompanied by adverse neurologic effects, C57BL/6 mice were given combined lopinavir/ritonavir (50/12.5-200/50 mg/kg) daily for 3 weeks. Data show that lopinavir/ritonavir administration caused significant metabolic derangement, including alterations in body weight and fat mass, as well as dose-dependent patterns of hyperlipidemia, hypoadiponectinemia, hypoleptinemia, and hyperinsulinemia. Evaluation of neurologic function revealed that even the lowest dose of lopinavir/ritonavir caused significant cognitive impairment assessed in multi-unit T-maze, but did not affect motor functions assessed as rotarod performance. Collectively, our results indicate that repeated lopinavir/ritonavir administration produces cognitive as well as metabolic impairments, and suggest that the development of selective aspects of metabolic syndrome in HIV patients could contribute to HIV-associated neurocognitive disorders.

    Topics: Animals; Cognition; Drug Administration Schedule; Drug Combinations; HIV; HIV Infections; HIV Protease Inhibitors; Lopinavir; Male; Metabolic Syndrome; Mice; Mice, Inbred C57BL; Motor Activity; Pyrimidinones; Ritonavir; Weight Loss

2010
Neonatal hypoxic preconditioning involves vascular endothelial growth factor.
    Neurobiology of disease, 2007, Volume: 26, Issue:1

    We studied hypoxic preconditioning (HxP) in the murine developing brain, focusing on the role for vascular endothelial growth factor (VEGF). Newborn mice were used as follows: (1) HxP (or normoxia) then intracerebral (i.c.) NMDA or AMPA-kainate agonist; (2) HxP then intraperitoneal (i.p.) anti-VEGFR2/Flk1 or anti-VEGFR1/Flt1 monoclonal blocking antibody (mAb) then i.c. NMDA/AMPA-kainate agonist; (3) i.p. VEGF then i.c. NMDA/AMPA-kainate agonist; and (4) in mutants lacking the hypoxia-responsive element (HRE) of the VEGF-A gene (VEGF( partial differential/ partial differential)) and their wild-type littermates (VEGF(+/+)), HxP followed by i.c. NMDA agonist. HxP reduced the size of NMDA-related cortical and AMPA-kainate-related cortical and white matter excitotoxic lesions. Anti-VEGFR2/Flk1 mAb prevented HxP-induced neuroprotection. VEGF produced dose-dependent reduction in cortical lesions. HxP did not prevent, but instead exacerbated, brain lesions in VEGF( partial differential/ partial differential) mutants. Thus, exogenous as well as endogenous VEGF reduces excitotoxic brain lesions in the developing mouse. The VEGF/VEGFR2/Flk1 pathway is involved in the neuroprotective response to HxP.

    Topics: Aging; Alanine; Animals; Animals, Newborn; Antibodies, Blocking; Brain; Excitatory Amino Acid Agonists; Hypoxia, Brain; Ibotenic Acid; Injections, Intraperitoneal; Mice; Mice, Transgenic; Mutation; Promoter Regions, Genetic; Pyrimidinones; Recombinant Proteins; Uracil; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factor Receptor-1; Vascular Endothelial Growth Factor Receptor-2; Weight Loss

2007