pyrimidinones and Staphylococcal-Infections

pyrimidinones has been researched along with Staphylococcal-Infections* in 8 studies

Other Studies

8 other study(ies) available for pyrimidinones and Staphylococcal-Infections

ArticleYear
Antibacterial Spiropyrimidinetriones with N-Linked Azole Substituents on a Benzisoxazole Scaffold Targeting DNA Gyrase.
    Journal of medicinal chemistry, 2020, 10-22, Volume: 63, Issue:20

    Herein, we report spiropyrimidinetriones (SPTs) incorporating N-linked azole substituents on a benzisoxazole scaffold with improved Gram-positive antibacterial activity relative to previously described analogues. SPTs have an unusual spirocyclic architecture and represent a new antibacterial class of bacterial DNA gyrase and topoisomerase IV inhibitors. They are not cross-resistant to fluoroquinolones and other DNA gyrase/topoisomerase IV inhibitors used clinically. The activity of the SPTs was assessed for DNA gyrase inhibition, and the antibacterial activity across Gram-positive and Gram-negative pathogens with N-linked 1,2,4-triazoles substituted on the 5-position provides the most worthwhile profile. Directed nucleophilic and electrophilic chemistry was developed to vary this 5-position with carbon, nitrogen, or oxygen substituents and explore structure-activity relationships including those around a target binding model. Compounds with favorable pharmacokinetic parameters were identified, and two compounds demonstrated cidality in a mouse model of

    Topics: Animals; Anti-Bacterial Agents; Azoles; Disease Models, Animal; DNA Gyrase; Dose-Response Relationship, Drug; Isoxazoles; Mice; Microbial Sensitivity Tests; Molecular Structure; Pyrimidinones; Rats; Rats, Wistar; Spiro Compounds; Staphylococcal Infections; Staphylococcus aureus; Structure-Activity Relationship; Topoisomerase II Inhibitors

2020
Pyrazolopyrimidinones, a novel class of copper-dependent bactericidal antibiotics against multi-drug resistant S. aureus.
    Metallomics : integrated biometal science, 2019, 04-17, Volume: 11, Issue:4

    The treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections poses a therapeutic challenge as even last resort drugs become increasingly ineffective. As the demand for antibiotics with novel modes of action is growing, new approaches are needed to probe a greater spectrum of antimicrobial activities for their potential efficacy against drug-resistant pathogens. The use of copper (Cu) by the innate immune system to mount an antimicrobial response against bacterial invaders has created an opportunity to explore a role for Cu in antimicrobial therapy. Here we describe pyrazolopyrimidinones (PZP) as novel copper-dependent inhibitors (CDI) of S. aureus. 5-Benzyl-3-(4-chlorophenyl)-2-methyl-4H,7H-pyrazolo[1,5-a]pyrimidin-7-one (PZP-915) showed potent bactericidal properties at sub-micromolar concentrations and activity against clinical MRSA isolates and biofilms cultures. This cupricidal activity is founded on the molecule's ability to coordinate Cu and induce accumulation of Cu ions inside S. aureus cells. We demonstrate that exposure to 915 + Cu led to an almost instantaneous collapse of the membrane potential which was accompanied by a complete depletion of cellular ATP, loss of cell-associated K+, a substantial gain of cell associated Na+, and an inability to control the influx of protons in slightly acidic medium, while the integrity of the cell membrane remained intact. These findings highlight PZP-915 as a novel membrane-directed metalloantibiotic against S. aureus that is likely to target a multiplicity of membrane associated protein functions rather than imposing physical damage to the membrane structure.

    Topics: Anti-Bacterial Agents; Biofilms; Copper; Humans; Methicillin-Resistant Staphylococcus aureus; Microbial Sensitivity Tests; Microbial Viability; Pyrimidinones; Staphylococcal Infections; Staphylococcus aureus

2019
Pyoderma Gangrenosum Under Dabrafenib and Trametinib for Metastatic Melanoma.
    Acta dermato-venereologica, 2018, Apr-27, Volume: 98, Issue:5

    Topics: Aged; Anti-Bacterial Agents; Antineoplastic Combined Chemotherapy Protocols; Humans; Imidazoles; Male; Melanoma; Methicillin-Resistant Staphylococcus aureus; Oximes; Protein Kinase Inhibitors; Pyoderma Gangrenosum; Pyridones; Pyrimidinones; Risk Factors; Skin Neoplasms; Staphylococcal Infections; Treatment Outcome

2018
RX-P873, a Novel Protein Synthesis Inhibitor, Accumulates in Human THP-1 Monocytes and Is Active against Intracellular Infections by Gram-Positive (Staphylococcus aureus) and Gram-Negative (Pseudomonas aeruginosa) Bacteria.
    Antimicrobial agents and chemotherapy, 2015, Volume: 59, Issue:8

    The pyrrolocytosine RX-P873, a new broad-spectrum antibiotic in preclinical development, inhibits protein synthesis at the translation step. The aims of this work were to study RX-P873's ability to accumulate in eukaryotic cells, together with its activity against extracellular and intracellular forms of infection by Staphylococcus aureus and Pseudomonas aeruginosa, using a pharmacodynamic approach allowing the determination of maximal relative efficacies (Emax values) and bacteriostatic concentrations (Cs values) on the basis of Hill equations of the concentration-response curves. RX-P873's apparent concentration in human THP-1 monocytes was about 6-fold higher than the extracellular one. In broth, MICs ranged from 0.125 to 0.5 mg/liter (S. aureus) and 2 to 8 mg/liter (P. aeruginosa), with no significant shift in these values against strains resistant to currently used antibiotics being noted. In concentration-dependent experiments, the pharmacodynamic profile of RX-P873 was not influenced by the resistance phenotype of the strains. Emax values (expressed as the decrease in the number of CFU from that in the initial inoculum) against S. aureus and P. aeruginosa reached more than 4 log units and 5 log units in broth, respectively, and 0.7 log unit and 2.7 log units in infected THP-1 cells, respectively, after 24 h. Cs values remained close to the MIC in all cases, making RX-P873 more potent than antibiotics to which the strains were resistant (moxifloxacin, vancomycin, and daptomycin for S. aureus; ciprofloxacin and ceftazidime for P. aeruginosa). Kill curves in broth showed that RX-P873 was more rapidly bactericidal against P. aeruginosa than against S. aureus. Taken together, these data suggest that RX-P873 may constitute a useful alternative for infections involving intracellular bacteria, especially Gram-negative species.

    Topics: Anti-Bacterial Agents; Ceftazidime; Cells, Cultured; Ciprofloxacin; Daptomycin; Drug Resistance, Multiple, Bacterial; Fluoroquinolones; Guanidines; Humans; Microbial Sensitivity Tests; Monocytes; Moxifloxacin; Protein Synthesis Inhibitors; Pseudomonas aeruginosa; Pseudomonas Infections; Pyrimidinones; Staphylococcal Infections; Staphylococcus aureus; Vancomycin

2015
Antibacterial inhibitors of Gram-positive thymidylate kinase: structure-activity relationships and chiral preference of a new hydrophobic binding region.
    Journal of medicinal chemistry, 2014, Jun-12, Volume: 57, Issue:11

    Thymidylate kinase (TMK), an essential enzyme in bacterial DNA biosynthesis, is an attractive therapeutic target for the development of novel antibacterial agents, and we continue to explore TMK inhibitors with improved potency, protein binding, and pharmacokinetic potential. A structure-guided design approach was employed to exploit a previously unexplored region in Staphylococcus aureus TMK via novel interactions. These efforts produced compound 39, with 3 nM IC50 against S. aureus TMK and 2 μg/mL MIC against methicillin-resistant S. aureus (MRSA). This compound exhibits a striking inverted chiral preference for binding relative to earlier compounds and also has improved physical properties and pharmacokinetics over previously published compounds. An example of this new series was efficacious in a murine S. aureus infection model, suggesting that compounds like 39 are options for further work toward a new Gram-positive antibiotic by maintaining a balance of microbiological potency, low clearance, and low protein binding that can result in lower efficacious doses.

    Topics: Animals; Anti-Bacterial Agents; Bacterial Proteins; Binding Sites; Crystallography, X-Ray; Drug Resistance, Bacterial; Gram-Positive Bacteria; Hydrophobic and Hydrophilic Interactions; Mice; Microbial Sensitivity Tests; Models, Molecular; Nucleoside-Phosphate Kinase; Piperidines; Protein Conformation; Pyrimidinones; Staphylococcal Infections; Staphylococcus aureus; Stereoisomerism; Structure-Activity Relationship

2014
Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog.
    Journal of dairy science, 2013, Volume: 96, Issue:2

    Staphylococcus aureus is a leading cause of intramammary infections (IMI). We recently demonstrated that Staph. aureus strains express the gene guaA during bovine IMI. This gene codes for a guanosine monophosphate synthetase and its expression is regulated by a guanine riboswitch. The guanine analog 2,5,6-triaminopyrimidine-4-one (PC1) is a ligand of the guanine riboswitch. Interactions between PC1 and its target result in inhibition of guanosine monophosphate synthesis and subsequent death of the bacterium. The present study describes the investigational use of PC1 for therapy of Staph. aureus IMI in lactating cows. The in vitro minimal inhibitory concentration of PC1 ranged from 0.5 to 4 μg/mL for a variety of Staph. aureus and Staphylococcus epidermidis strains and required a reducing agent for stability and full potency. A safety assessment study was performed, whereby the healthy quarters of 4 cows were infused with increasing doses of PC1 (0, 150, 250, and 500 mg). Over the 44 h following infusions, no obvious adverse effect was observed. Ten Holstein multiparous cows in mid lactation were then experimentally infused into 3 of the quarters with approximately 50 cfu of Staph. aureus strain SHY97-3906 and infection was allowed to progress for 2 wk before starting PC1 treatment. Bacterial counts reached then about 10(3) to 10(4) cfu/mL of milk. Infected quarters were treated with 1 of 3 doses of PC1 (0, 250, or 500 mg) after each morning and evening milking for 7d (i.e., 14 intramammary infusions of PC1). During the treatment period, milk from PC1-treated quarters showed a significant reduction in bacterial concentrations. However, this reduction of Staph. aureus count in milk was not maintained during the 4 wk following the end of the treatment and only 15% of the PC1-treated quarters underwent bacteriological cure. The somatic cell count and the quarter milk production were not affected by treatments. Although bacterial clearance was not achieved following treatment with PC1, these results demonstrate that the Staph. aureus guanine riboswitch represents a relevant and promising drug target for a novel class of antibiotics for the animal food industry.

    Topics: Animals; Anti-Bacterial Agents; Cattle; Dose-Response Relationship, Drug; Female; Guanine; Ligands; Mastitis, Bovine; Microbial Sensitivity Tests; Pyrimidinones; Riboswitch; Staphylococcal Infections; Staphylococcus aureus

2013
Membrane stability and mitochondrial activity of human-ejaculated spermatozoa during in vitro experimental infection with Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus.
    Andrologia, 2012, Volume: 44, Issue:5

    The aim of the study was to examine an in vitro effect of the three bacterial strains (Escherichia coli, Staphylococcus haemolyticus and Bacteroides ureolyticus) on ejaculated spermatozoa with reference to sperm membrane integrity and mitochondrial activity. The study was carried out on swim-up-separated spermatozoa from 12 normozoospermic volunteers. Sperm plasma membrane stability was evaluated by the LIVE/DEAD Sperm Viability Kit and by the merocyanine 540 test. Mitochondrial activity was evaluated using the JC-1 test as well as the NADH-dependent NBT assay. The percentage of dead cells was significantly higher in spermatozoa treated with B. ureolyticus as compared to that of control spermatozoa (P < 0.01). All the bacterial strains applied affected sperm plasma membrane architecture measured by M540 test (P < 0.01). Moreover, the presence of E. coli or B. ureolyticus was connected with significant decrease in both the number of cells with high mitochondrial transmembrane potential (ΔΨm) and the cells with normal oxidoreductive function of mitochondria (P < 0.05 as compared to untreated cells). To conclude, the contact of bacteria with ejaculated spermatozoa can be a reason for severe injury of sperm membrane stability and mitochondrial activity with potential consequences for male fertility.

    Topics: Adult; Bacteroides Infections; Benzimidazoles; Carbocyanines; Cell Membrane; Cell Survival; Escherichia coli Infections; Humans; Infertility, Male; Male; Mitochondria; Pyrimidinones; Spermatozoa; Staphylococcal Infections; Staphylococcus haemolyticus

2012
Novel riboswitch ligand analogs as selective inhibitors of guanine-related metabolic pathways.
    PLoS pathogens, 2010, Apr-22, Volume: 6, Issue:4

    Riboswitches are regulatory elements modulating gene expression in response to specific metabolite binding. It has been recently reported that riboswitch agonists may exhibit antimicrobial properties by binding to the riboswitch domain. Guanine riboswitches are involved in the regulation of transport and biosynthesis of purine metabolites, which are critical for the nucleotides cellular pool. Upon guanine binding, these riboswitches stabilize a 5'-untranslated mRNA structure that causes transcription attenuation of the downstream open reading frame. In principle, any agonistic compound targeting a guanine riboswitch could cause gene repression even when the cell is starved for guanine. Antibiotics binding to riboswitches provide novel antimicrobial compounds that can be rationally designed from riboswitch crystal structures. Using this, we have identified a pyrimidine compound (PC1) binding guanine riboswitches that shows bactericidal activity against a subgroup of bacterial species including well-known nosocomial pathogens. This selective bacterial killing is only achieved when guaA, a gene coding for a GMP synthetase, is under the control of the riboswitch. Among the bacterial strains tested, several clinical strains exhibiting multiple drug resistance were inhibited suggesting that PC1 targets a different metabolic pathway. As a proof of principle, we have used a mouse model to show a direct correlation between the administration of PC1 and the reduction of Staphylococcus aureus infection in mammary glands. This work establishes the possibility of using existing structural knowledge to design novel guanine riboswitch-targeting antibiotics as powerful and selective antimicrobial compounds. Particularly, the finding of this new guanine riboswitch target is crucial as community-acquired bacterial infections have recently started to emerge.

    Topics: Animals; Anti-Bacterial Agents; Base Sequence; Carbon-Nitrogen Ligases; Gene Expression Regulation, Bacterial; Guanine; Ligands; Mastitis; Mice; Molecular Sequence Data; Protein Structure, Secondary; Pyrimidinones; Regulatory Elements, Transcriptional; Signal Transduction; Staphylococcal Infections; Staphylococcus aureus

2010