pyrimidinones and Neointima

pyrimidinones has been researched along with Neointima* in 2 studies

Other Studies

2 other study(ies) available for pyrimidinones and Neointima

ArticleYear
TAK-733 inhibits inflammatory neointimal formation by suppressing proliferation, migration, and inflammation in vitro and in vivo.
    Experimental & molecular medicine, 2018, 04-20, Volume: 50, Issue:4

    As a potent and selective allosteric inhibitor of MEK, TAK-733 has been shown to exert anti-cancer effects for a wide range of cancers both in vitro and in vivo. However, its effects on inhibiting growth have never been investigated in the cardiovascular system, where regulation of abnormal vascular smooth muscle cell growth in neointimal hyperplasia is an important area of focus. Angiotensin II was used to mimic inflammatory neointimal hyperplasia in an in vitro environment, and balloon catheter-induced injury with an infusion of angiotensin II was used to generate an in vivo rat restenosis model under inflammatory conditions. TAK-733 exerted anti-proliferative and anti-migratory effects on human vascular smooth muscle cells. These multiple effects of TAK-733 were evaluated using various assays, such as cell cycle analysis and wound healing. Interestingly, TAK-733 did not induce apoptosis in smooth muscle cells but only reduced the proliferation rate; additionally, it did not affect EC viability. TAK-733 also exhibited anti-inflammatory activity, as observed by attenuated monocyte adhesion to smooth muscle cells via inhibition of ICAM1 and VCAM1 overexpression. The in vivo study demonstrated that neointimal hyperplasia after balloon injury and angiotensin II stimulation was suppressed by TAK-733, and downregulation of the inflammatory signal and enhanced re-endothelialization were observed. TAK-733 may have therapeutic potential for treating neointimal hyperplasia by attenuating smooth muscle cell proliferation, migration, and inflammation. Thus, TAK-733 could be a promising drug candidate for treating patients with restenosis.

    Topics: Animals; Cell Proliferation; Disease Models, Animal; Graft Occlusion, Vascular; Humans; Inflammation; Male; Mice; Neointima; Pyridones; Pyrimidinones; Rats; Rats, Sprague-Dawley; RAW 264.7 Cells

2018
Inhibition of Smooth Muscle β-Catenin Hinders Neointima Formation After Vascular Injury.
    Arteriosclerosis, thrombosis, and vascular biology, 2017, Volume: 37, Issue:5

    Smooth muscle cells (SMCs) contribute to neointima formation after vascular injury. Although β-catenin expression is induced after injury, whether its function is essential in SMCs for neointimal growth is unknown. Moreover, although inhibitors of β-catenin have been developed, their effects on SMC growth have not been tested. We assessed the requirement for SMC β-catenin in short-term vascular homeostasis and in response to arterial injury and investigated the effects of β-catenin inhibitors on vascular SMC growth.. We used an inducible, conditional genetic deletion of β-catenin in SMCs of adult mice. Uninjured arteries from adult mice lacking SMC β-catenin were indistinguishable from controls in terms of structure and SMC marker gene expression. After carotid artery ligation, however, vessels from mice lacking SMC β-catenin developed smaller neointimas, with lower neointimal cell proliferation and increased apoptosis. SMCs lacking β-catenin showed decreased mRNA expression of. SMC β-catenin is dispensable for maintenance of the structure and state of differentiation of uninjured adult arteries, but is required for neointima formation after vascular injury. Pharmacological β-catenin inhibitors hinder growth of human vascular SMCs. Thus, inhibiting β-catenin has potential as a therapy to limit SMC accumulation and vascular obstruction.

    Topics: Animals; Apoptosis; beta Catenin; Bridged Bicyclo Compounds, Heterocyclic; Carotid Arteries; Carotid Artery Injuries; Cell Movement; Cell Proliferation; Cells, Cultured; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Genotype; Humans; Male; Mice, Knockout; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Neointima; Phenotype; Pyrimidinones; Signal Transduction; Time Factors; Triazines; Vascular Remodeling

2017