pyrimidinones has been researched along with Cardiovascular-Diseases* in 8 studies
1 review(s) available for pyrimidinones and Cardiovascular-Diseases
Article | Year |
---|---|
Adverse effects of antiretroviral therapy for HIV infection: a review of selected topics.
In the current era of HIV treatment, the toxicity profiles of antiretroviral drugs have increasingly emerged as a basis for selecting initial antiretroviral regimens as well as a reason for switching therapy in treatment-experienced patients. In this respect, an intensive research effort involving clinical research as well as basic science research over the past six years, has focused on the cluster of metabolic and body composition abnormalities that have come to be termed the 'lipodystrophy syndrome'. These data have now provided a clear and clinically relevant understanding of the individual profiles of drugs within the nucleoside analogue reverse transcriptase inhibitor , HIV protease inhibitor and non-nucleoside analogue reverse transcriptase inhibitor drug classes, and have provided a rational basis for assessing and monitoring these adverse effects in clinical practice. In this review, current and emerging drug toxicities are considered with an emphasis on lipodystrophy complications. Topics: Adenine; Alkynes; Anti-Retroviral Agents; Antiretroviral Therapy, Highly Active; Benzoxazines; Cardiovascular Diseases; Cyclopropanes; Drug Monitoring; Drug Therapy, Combination; HIV Infections; HIV-Associated Lipodystrophy Syndrome; Humans; Kidney Diseases; Lopinavir; Metabolic Syndrome; Nevirapine; Organophosphonates; Oxazines; Pyrimidinones; Risk Factors; Tenofovir | 2005 |
3 trial(s) available for pyrimidinones and Cardiovascular-Diseases
Article | Year |
---|---|
Oral Relugolix for Androgen-Deprivation Therapy in Advanced Prostate Cancer.
Injectable luteinizing hormone-releasing hormone agonists (e.g., leuprolide) are the standard agents for achieving androgen deprivation for prostate cancer despite the initial testosterone surge and delay in therapeutic effect. The efficacy and safety of relugolix, an oral gonadotropin-releasing hormone antagonist, as compared with those of leuprolide are not known.. In this phase 3 trial, we randomly assigned patients with advanced prostate cancer, in a 2:1 ratio, to receive relugolix (120 mg orally once daily) or leuprolide (injections every 3 months) for 48 weeks. The primary end point was sustained testosterone suppression to castrate levels (<50 ng per deciliter) through 48 weeks. Secondary end points included noninferiority with respect to the primary end point, castrate levels of testosterone on day 4, and profound castrate levels (<20 ng per deciliter) on day 15. Testosterone recovery was evaluated in a subgroup of patients.. A total of 622 patients received relugolix and 308 received leuprolide. Of men who received relugolix, 96.7% (95% confidence interval [CI], 94.9 to 97.9) maintained castration through 48 weeks, as compared with 88.8% (95% CI, 84.6 to 91.8) of men receiving leuprolide. The difference of 7.9 percentage points (95% CI, 4.1 to 11.8) showed noninferiority and superiority of relugolix (P<0.001 for superiority). All other key secondary end points showed superiority of relugolix over leuprolide (P<0.001). The percentage of patients with castrate levels of testosterone on day 4 was 56.0% with relugolix and 0% with leuprolide. In the subgroup of 184 patients followed for testosterone recovery, the mean testosterone levels 90 days after treatment discontinuation were 288.4 ng per deciliter in the relugolix group and 58.6 ng per deciliter in the leuprolide group. Among all the patients, the incidence of major adverse cardiovascular events was 2.9% in the relugolix group and 6.2% in the leuprolide group (hazard ratio, 0.46; 95% CI, 0.24 to 0.88).. In this trial involving men with advanced prostate cancer, relugolix achieved rapid, sustained suppression of testosterone levels that was superior to that with leuprolide, with a 54% lower risk of major adverse cardiovascular events. (Funded by Myovant Sciences; HERO ClinicalTrials.gov number, NCT03085095.). Topics: Adenocarcinoma; Administration, Oral; Aged; Aged, 80 and over; Antineoplastic Agents, Hormonal; Cardiovascular Diseases; Gonadotropin-Releasing Hormone; Humans; Injections, Subcutaneous; Leuprolide; Male; Middle Aged; Phenylurea Compounds; Prostatic Neoplasms; Pyrimidinones; Testosterone | 2020 |
Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment.
Abacavir sulfate/lamivudine (ABC/3TC) and tenofovir DF/emtricitabine (TDF/FTC) are widely used nucleoside reverse transcriptase inhibitors for initial HIV-1 treatment. This is the first completed, randomized clinical trial to directly compare the efficacy, safety, and tolerability of these agents, each in combination with lopinavir/ritonavir in antiretroviral-naive patients.. Six hundred and eighty-eight antiretroviral-naive, HIV-1-infected patients were randomized in this double-blind, placebo-matched, multicenter, noninferiority study to receive a once-daily regimen of either ABC/3TC 600 mg/300 mg or TDF/FTC 300 mg/200 mg, both with lopinavir/ritonavir 800 mg/200 mg. Primary endpoints were the proportion of patients with HIV-1 RNA below 50 copies/ml at week 48 (missing = failure, switch included analysis) and the proportion of patients experiencing adverse events over 96 weeks.. At week 48, 68% in the ABC/3TC group vs. 67% in the TDF/FTC group achieved an HIV-1 RNA below 50 copies/ml (intent-to-treat exposed missing = failure, 95% confidence interval on the difference -6.63 to 7.40, P = 0.913), demonstrating the noninferiority of ABC/3TC to TDF/FTC at week 48. Noninferiority of the two regimens was sustained at week 96 (60% vs. 58%, respectively, 95% confidence interval -5.41 to 9.32, P = 0.603). In addition, efficacy of both regimens was similar in patients with baseline HIV-1 RNA >or= 100 000 copies/ml or CD4 cell counts below 50 cells/microl. Median CD4 recovery (ABC/3TC vs. TDF/FTC, cells/microl) was +250 vs. +247 by week 96. Premature study discontinuation due to adverse events occurred in 6% of patients in both groups. Protocol-defined virologic failure occurred in 14% of patients in both groups.. Both ABC/3TC and TDF/FTC provided comparable antiviral efficacy, safety, and tolerability when each was combined with lopinavir/ritonavir in treatment-naive patients. Topics: Adenine; Adult; Anti-HIV Agents; Antiretroviral Therapy, Highly Active; Cardiovascular Diseases; CD4 Lymphocyte Count; Deoxycytidine; Dideoxynucleosides; Double-Blind Method; Emtricitabine; Female; HIV Infections; HIV-1; Humans; Lamivudine; Lopinavir; Male; Organophosphonates; Pyrimidinones; Ritonavir; RNA, Viral; Tenofovir; Treatment Outcome | 2009 |
Metabolic changes in protease inhibitor-naive patients treated for 1 year with lopinavir/ritonavir.
Topics: Adult; Blood Glucose; Cardiovascular Diseases; CD4 Lymphocyte Count; Cholesterol; Drug Therapy, Combination; Female; HIV Infections; HIV Protease Inhibitors; Humans; Insulin Resistance; Lipids; Lopinavir; Male; Pyrimidinones; Risk Factors; Ritonavir | 2008 |
4 other study(ies) available for pyrimidinones and Cardiovascular-Diseases
Article | Year |
---|---|
Cardiovascular adverse events associated with BRAF versus BRAF/MEK inhibitor: Cross-sectional and longitudinal analysis using two large national registries.
Cardiovascular adverse events (CVAEs) associated with BRAF inhibitors alone versus combination BRAF/MEK inhibitors are not fully understood.. This study included all adult patients who received BRAF inhibitors (vemurafenib, dabrafenib, encorafenib) or combinations BRAF/MEK inhibitors (vemurafenib/cobimetinib; dabrafenib/trametinib; encorafenib/binimetinib). We utilized the cross-sectional FDA's Adverse Events Reporting System (FAERS) and longitudinal Truven Health Analytics/IBM MarketScan database from 2011 to 2018. Various CVAEs, including arterial hypertension, heart failure (HF), and venous thromboembolism (VTE), were studied using adjusted regression techniques.. In FAERS, 7752 AEs were reported (40% BRAF and 60% BRAF/MEK). Median age was 60 (IQR 49-69) years with 45% females and 97% with melanoma. Among these, 567 (7.4%) were cardiovascular adverse events (mortality rate 19%). Compared with monotherapy, combination therapy was associated with increased risk for HF (reporting odds ratio [ROR] = 1.62 (CI = 1.14-2.30); p = 0.007), arterial hypertension (ROR = 1.75 (CI = 1.12-2.89); p = 0.02) and VTE (ROR = 1.80 (CI = 1.12-2.89); p = 0.02). Marketscan had 657 patients with median age of 53 years (IQR 46-60), 39.3% female, and 88.7% with melanoma. There were 26.2% CVAEs (CI: 14.8%-36%) within 6 months of medication start in those receiving combination therapy versus 16.7% CVAEs (CI: 13.1%-20.2%) among those receiving monotherapy. Combination therapy was associated with CVAEs compared to monotherapy (adjusted HR: 1.56 (CI: 1.01-2.42); p = 0.045).. In two independent real-world cohorts, combination BRAF/MEK inhibitors were associated with increased CVAEs compared to monotherapy, especially HF, and hypertension. Topics: Adult; Aged; Aged, 80 and over; Antineoplastic Agents; Antineoplastic Combined Chemotherapy Protocols; Azetidines; Benzimidazoles; Carbamates; Carcinoma, Non-Small-Cell Lung; Cardiotoxicity; Cardiovascular Diseases; Colonic Neoplasms; Cross-Sectional Studies; Female; Heart Failure; Humans; Hypertension; Imidazoles; Lung Neoplasms; Male; Melanoma; Middle Aged; Mitogen-Activated Protein Kinase Kinases; Oximes; Piperidines; Protein Kinase Inhibitors; Proto-Oncogene Proteins B-raf; Pyridones; Pyrimidinones; Registries; Regression Analysis; Skin Neoplasms; Sulfonamides; Vemurafenib; Venous Thromboembolism; Young Adult | 2021 |
Relugolix, an oral gonadotropin-releasing hormone antagonist for the treatment of prostate cancer.
Androgen deprivation therapy using gonadotropin-releasing hormone (GnRH) analogues is standard treatment for intermediate and advanced prostate cancer. GnRH agonist therapy results in an initial testosterone flare, and increased metabolic and cardiovascular risks. The GnRH antagonist relugolix is able to reduce serum testosterone levels in men with prostate cancer without inducing testosterone flare. In the HERO Phase III trial, relugolix was superior to leuprolide acetate at rapidly reducing testosterone and continuously suppressing testosterone, with faster post-treatment recovery of testosterone levels. Relugolix was associated with a 54% lower incidence of major adverse cardiovascular events than leuprolide acetate. As the first oral GnRH antagonist approved for the treatment of advanced prostate cancer, relugolix offers a new treatment option.. Lay abstract The male sex hormone testosterone promotes the growth of prostate cancer cells. Some drug treatments for prostate cancer, such as gonadotropin-releasing hormone (GnRH) receptor agonists and antagonists, work to reduce the production of testosterone. However, GnRH receptor agonists like leuprolide acetate can increase testosterone levels at first, before reducing it, and this temporary increase can cause side effects, such as bone pain. Drugs of this type have also been linked to a higher risk of heart attacks, strokes, and death. Relugolix works a different way; it is a GnRH receptor antagonist that reduces testosterone without an initial increase. A clinical study showed that relugolix reduced testosterone levels more quickly than leuprolide acetate, a commonly used injectable drug for the treatment of prostate cancer. After stopping treatment, levels of testosterone in the blood returned to normal faster in men who received relugolix than in men who received leuprolide acetate. Men who received relugolix had a lower incidence of heart attacks, strokes, and death compared with men who received leuprolide acetate. The US FDA approved relugolix as the first oral, once-daily GnRH receptor antagonist for the treatment of advanced prostate cancer, offering men a new treatment option. Topics: Cardiovascular Diseases; Clinical Trials, Phase II as Topic; Clinical Trials, Phase III as Topic; Gonadotropin-Releasing Hormone; Humans; Incidence; Leuprolide; Male; Phenylurea Compounds; Prostatic Neoplasms; Pyrimidinones; Randomized Controlled Trials as Topic; Testosterone; Treatment Outcome | 2021 |
Discovery of 2-(6-(5-Chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999): A Highly Selective Mechanism-Based Myeloperoxidase Inhibitor for the Treatment of Cardiovascular Diseases.
Myeloperoxidase (MPO) is a heme peroxidase that catalyzes the production of hypochlorous acid. Clinical evidence suggests a causal role for MPO in various autoimmune and inflammatory disorders including vasculitis and cardiovascular and Parkinson's diseases, implying that MPO inhibitors may represent a therapeutic treatment option. Herein, we present the design, synthesis, and preclinical evaluation of N1-substituted-6-arylthiouracils as potent and selective inhibitors of MPO. Inhibition proceeded in a time-dependent manner by a covalent, irreversible mechanism, which was dependent upon MPO catalysis, consistent with mechanism-based inactivation. N1-Substituted-6-arylthiouracils exhibited low partition ratios and high selectivity for MPO over thyroid peroxidase and cytochrome P450 isoforms. N1-Substituted-6-arylthiouracils also demonstrated inhibition of MPO activity in lipopolysaccharide-stimulated human whole blood. Robust inhibition of plasma MPO activity was demonstrated with the lead compound 2-(6-(5-chloro-2-methoxyphenyl)-4-oxo-2-thioxo-3,4-dihydropyrimidin-1(2H)-yl)acetamide (PF-06282999, 8) upon oral administration to lipopolysaccharide-treated cynomolgus monkeys. On the basis of its pharmacological and pharmacokinetic profile, PF-06282999 has been advanced to first-in-human pharmacokinetic and safety studies. Topics: Acetamides; Animals; Cardiovascular Diseases; Drug Discovery; Enzyme Inhibitors; Humans; Peroxidase; Pyrimidinones; Rats, Wistar | 2015 |
Lipid and lipoprotein profile in HIV-infected patients treated with lopinavir/ritonavir as a component of the first combination antiretroviral therapy.
We characterized lipid and lipoprotein changes associated with a lopinavir/ritonavir-containing regimen. We enrolled previously antiretroviral-naive patients participating in the Swiss HIV Cohort Study. Fasting blood samples (baseline) were retrieved retrospectively from stored frozen plasma and posttreatment (follow-up) samples were collected prospectively at two separate visits. Lipids and lipoproteins were analyzed at a single reference laboratory. Sixty-five patients had two posttreatment lipid profile measurements and nine had only one. Most of the measured lipids and lipoprotein plasma concentrations increased on lopinavir/ritonavir-based treatment. The percentage of patients with hypertriglyceridemia (TG >150 mg/dl) increased from 28/74 (38%) at baseline to 37/65 (57%) at the second follow-up. We did not find any correlation between lopinavir plasma levels and the concentration of triglycerides. There was weak evidence of an increase in small dense LDL-apoB during the first year of treatment but not beyond 1 year (odds ratio 4.5, 90% CI 0.7 to 29 and 0.9, 90% CI 0.5 to 1.5, respectively). However, 69% of our patients still had undetectable small dense LDL-apoB levels while on treatment. LDL-cholesterol increased by a mean of 17 mg/dl (90% CI -3 to 37) during the first year of treatment, but mean values remained below the cut-off for therapeutic intervention. Despite an increase in the majority of measured lipids and lipoproteins particularly in the first year after initiation, we could not detect an obvious increase of cardiovascular risk resulting from the observed lipid changes. Topics: Adult; Anti-HIV Agents; Antiretroviral Therapy, Highly Active; Cardiovascular Diseases; Female; HIV Infections; Humans; Lipids; Lipoproteins; Lopinavir; Male; Middle Aged; Pyrimidinones; Retrospective Studies; Risk Assessment; Ritonavir | 2011 |