pyrimidinones has been researched along with Brain-Stem-Neoplasms* in 2 studies
2 other study(ies) available for pyrimidinones and Brain-Stem-Neoplasms
Article | Year |
---|---|
Combined treatment with CBP and BET inhibitors reverses inadvertent activation of detrimental super enhancer programs in DIPG cells.
Diffuse intrinsic pontine gliomas (DIPG) are the most aggressive brain tumors in children with 5-year survival rates of only 2%. About 85% of all DIPG are characterized by a lysine-to-methionine substitution in histone 3, which leads to global H3K27 hypomethylation accompanied by H3K27 hyperacetylation. Hyperacetylation in DIPG favors the action of the Bromodomain and Extra-Terminal (BET) protein BRD4, and leads to the reprogramming of the enhancer landscape contributing to the activation of DIPG super enhancer-driven oncogenes. The activity of the acetyltransferase CREB-binding protein (CBP) is enhanced by BRD4 and associated with acetylation of nucleosomes at super enhancers (SE). In addition, CBP contributes to transcriptional activation through its function as a scaffold and protein bridge. Monotherapy with either a CBP (ICG-001) or BET inhibitor (JQ1) led to the reduction of tumor-related characteristics. Interestingly, combined treatment induced strong cytotoxic effects in H3.3K27M-mutated DIPG cell lines. RNA sequencing and chromatin immunoprecipitation revealed that these effects were caused by the inactivation of DIPG SE-controlled tumor-related genes. However, single treatment with ICG-001 or JQ1, respectively, led to activation of a subgroup of detrimental super enhancers. Combinatorial treatment reversed the inadvertent activation of these super enhancers and rescued the effect of ICG-001 and JQ1 single treatment on enhancer-driven oncogenes in H3K27M-mutated DIPG, but not in H3 wild-type pedHGG cells. In conclusion, combinatorial treatment with CBP and BET inhibitors is highly efficient in H3K27M-mutant DIPG due to reversal of inadvertent activation of detrimental SE programs in comparison with monotherapy. Topics: Acetylation; Astrocytoma; Azepines; Brain Stem Neoplasms; Bridged Bicyclo Compounds, Heterocyclic; Cell Cycle Proteins; Cell Line, Tumor; Cell Proliferation; CREB-Binding Protein; Diffuse Intrinsic Pontine Glioma; Gene Expression Regulation, Neoplastic; Glioma; Histones; Humans; Mutation; Nuclear Proteins; Nucleosomes; Proteins; Pyrimidinones; Transcription Factors; Transcriptional Activation; Triazoles | 2020 |
WEE1 kinase inhibition enhances the radiation response of diffuse intrinsic pontine gliomas.
Diffuse intrinsic pontine glioma (DIPG) is a fatal pediatric disease. Thus far, no therapeutic agent has proven beneficial in the treatment of this malignancy. Therefore, conventional DNA-damaging radiotherapy remains the standard treatment, providing transient neurologic improvement without improving the probability of overall survival. During radiotherapy, WEE1 kinase controls the G(2) cell-cycle checkpoint, allowing for repair of irradiation (IR)-induced DNA damage. Here, we show that WEE1 kinase is one of the highest overexpressed kinases in primary DIPG tissues compared with matching non-neoplastic brain tissues. Inhibition of WEE1 by MK-1775 treatment of DIPG cells inhibited the IR-induced WEE1-mediated phosphorylation of CDC2, resulting in reduced G(2)-M arrest and decreased cell viability. Finally, we show that MK-1775 enhances the radiation response of E98-Fluc-mCherry DIPG mouse xenografts. Altogether, these results show that inhibition of WEE1 kinase in conjunction with radiotherapy holds potential as a therapeutic approach for the treatment of DIPG. Topics: Animals; Brain Stem Neoplasms; Cell Cycle Proteins; Combined Modality Therapy; Female; Glioma; Humans; Immunohistochemistry; Mice; Mice, Nude; Nuclear Proteins; Phosphorylation; Protein-Tyrosine Kinases; Pyrazoles; Pyrimidines; Pyrimidinones; Radiation-Sensitizing Agents; Random Allocation; Xenograft Model Antitumor Assays | 2013 |