pyrazolone has been researched along with Leukemia* in 2 studies
2 other study(ies) available for pyrazolone and Leukemia
Article | Year |
---|---|
Specific inhibitors of the protein tyrosine phosphatase Shp2 identified by high-throughput docking.
The protein tyrosine phosphatase Shp2 is a positive regulator of growth factor signaling. Gain-of-function mutations in several types of leukemia define Shp2 as a bona fide oncogene. We performed a high-throughput in silico screen for small-molecular-weight compounds that bind the catalytic site of Shp2. We have identified the phenylhydrazonopyrazolone sulfonate PHPS1 as a potent and cell-permeable inhibitor, which is specific for Shp2 over the closely related tyrosine phosphatases Shp1 and PTP1B. PHPS1 inhibits Shp2-dependent cellular events such as hepatocyte growth factor/scatter factor (HGF/SF)-induced epithelial cell scattering and branching morphogenesis. PHPS1 also blocks Shp2-dependent downstream signaling, namely HGF/SF-induced sustained phosphorylation of the Erk1/2 MAP kinases and dephosphorylation of paxillin. Furthermore, PHPS1 efficiently inhibits activation of Erk1/2 by the leukemia-associated Shp2 mutant, Shp2-E76K, and blocks the anchorage-independent growth of a variety of human tumor cell lines. The PHPS compound class is therefore suitable for further development of therapeutics for the treatment of Shp2-dependent diseases. Topics: Animals; Benzenesulfonates; Catalytic Domain; Dogs; Drug Screening Assays, Antitumor; Gene Expression Regulation; Hepatocyte Growth Factor; Humans; Hydrazones; Kinetics; Leukemia; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Models, Biological; Protein Tyrosine Phosphatase, Non-Receptor Type 11; Pyrazolones; Structure-Activity Relationship | 2008 |
A novel pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, as a potent catalytic inhibitor of human telomerase.
A new derivative of 1-phenyl-3-methyl-5-pyrazolone, 4,4-dichloro-1-(2,4-dichlorophenyl)-3-methyl-5-pyrazolone, named TELIN, was chemically synthesized and identified as a potent inhibitor of human telomerase in the cell-free telomeric repeat amplification protocol. TELIN inhibited telomerase activity at submicromolar level with IC50 of approximately 0.3 microM. Kinetic studies revealed that TELIN does not bind to DNA but to telomerase protein, and the mode of inhibition by this substance was competitive-noncompetitive mixed-type with respect to the TS primer, whereas it was uncompetitive or noncompetitive-uncompetitive mixed-type with respect to the three deoxyribonucleosides. These results demonstrate that TELIN is a specific potent catalytic blocker of telomerase,and is considered to be a valuable substance for medical treatment of cancer and related diseases. Topics: Cell Line; Cell Line, Tumor; Enzyme Activation; Fibroblasts; Humans; Kinetics; Leukemia; Pyrazoles; Pyrazolones; Telomerase | 2004 |