pyochelin has been researched along with Cystic-Fibrosis* in 6 studies
1 review(s) available for pyochelin and Cystic-Fibrosis
Article | Year |
---|---|
Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions.
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection. Topics: Cystic Fibrosis; Humans; Iron; Pseudomonas aeruginosa; Siderophores; Virulence | 2023 |
5 other study(ies) available for pyochelin and Cystic-Fibrosis
Article | Year |
---|---|
Proteomics of Pseudomonas aeruginosa Australian epidemic strain 1 (AES-1) cultured under conditions mimicking the cystic fibrosis lung reveals increased iron acquisition via the siderophore pyochelin.
Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-to-person transmissible strains have been identified in CF clinics worldwide, and the molecular basis for transmissibility remains poorly understood. We undertook a complementary proteomics approach to characterize protein profiles from a transmissible, acute isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1 when grown in an artificial medium that mimics the CF lung environment compared to growth in standard laboratory medium. Proteins elevated in abundance in AES-1R included those involved in methionine and S-adenosylmethionine biosynthesis and in the synthesis of phenazines. Proteomic data were validated by measuring culture supernatant levels of the virulence factor pyocyanin, which is the final product of the phenazine pathway. AES-1R and PAO1 released higher extracellular levels of pyocyanin compared to PA14 when grown in conditions that mimic the CF lung. Proteins associated with biosynthesis of the iron-scavenging siderophore pyochelin (PchDEFGH and FptA) were also present at elevated abundance in AES-1R and at much higher levels than in PAO1, whereas they were reduced in PA14. These protein changes resulted phenotypically in increased extracellular iron acquisition potential and, specifically, elevated pyochelin levels in AES-1R culture supernatants as detected by chrome azurol-S assay and fluorometry, respectively. Transcript analysis of pyochelin genes (pchDFG and fptA) showed they were highly expressed during the early stage of growth in artificial sputum medium (18 h) but returned to basal levels following the establishment of microcolony growth (72 h) consistent with that observed in the CF lung. This provides further evidence that iron acquisition by pyochelin may play a role in the early stages of transmissible CF infection associated with AES-1R. Topics: Bacterial Proteins; Bacteriological Techniques; Culture Media; Cystic Fibrosis; Electrophoresis, Gel, Two-Dimensional; Host-Pathogen Interactions; Humans; Iron; Metabolic Networks and Pathways; Phenols; Proteome; Proteomics; Pseudomonas aeruginosa; Pyocyanine; Sputum; Tandem Mass Spectrometry; Thiazoles | 2012 |
Pseudomonas siderophores in the sputum of patients with cystic fibrosis.
The lungs of patients with cystic fibrosis become chronically infected with the bacterium Pseudomonas aeruginosa, which heralds progressive lung damage and a decline in health. Iron is a crucial micronutrient for bacteria and its acquisition is a key factor in infection. P. aeruginosa can acquire this element by secreting pyoverdine and pyochelin, iron-chelating compounds (siderophores) that scavenge iron and deliver it to the bacteria. Siderophore-mediated iron uptake is generally considered a key factor in the ability of P. aeruginosa to cause infection. We have investigated the amounts of pyoverdine in 148 sputum samples from 36 cystic fibrosis patients (30 infected with P. aeruginosa and 6 as negative controls). Pyoverdine was present in 93 samples in concentrations between 0.30 and 51 μM (median 4.6 μM) and there was a strong association between the amount of pyoverdine and the number of P. aeruginosa present. However, pyoverdine was not present, or below the limits of detection (~0.3 μM), in 21 sputum samples that contained P. aeruginosa. Pyochelin was also absent, or below the limits of detection (~1 μM), in samples from P. aeruginosa-infected patients with little or no detectable pyoverdine. Our data show that pyoverdine is an important iron-scavenging molecule for P. aeruginosa in many cystic fibrosis patients, but other P. aeruginosa iron-uptake systems must be active in some patients to satisfy the bacterial need for iron. Topics: Adult; Cystic Fibrosis; Female; Humans; Iron; Male; Oligopeptides; Phenols; Pseudomonas aeruginosa; Pseudomonas Infections; Siderophores; Sputum; Thiazoles; Young Adult | 2011 |
Siderophore production by cystic fibrosis isolates of Burkholderia cepacia.
Sixty-one Burkholderia cepacia isolates from patients with cystic fibrosis (CF) and four plant isolates were screened for production of the siderophores salicylic acid (SA), pyochelin, cepabactin, and ornibactins and fingerprinted by a PCR-based randomly amplified polymorphic DNA (RAPD) method. Of the 24 RAPD types determined, 22 (92%) were associated with isolates that produced SA, 21 (87%) were associated with isolates that produced ornibactins, 15 (60%) were associated with isolates that produced pyochelin, and 3 (12%) were associated with isolates that produced cepabactin. Of the 24 RAPD types plus 2 phenotypic variants of types 1 and 9, 3 were associated with isolates that produced all four siderophores, 8 were associated with isolates that produced three siderophores, 12 were associated with isolates that produced two siderophores, and 3 were associated with isolates that produced only one siderophore. These results suggest that the numbers and types of siderophores produced by CF isolates of B. cepacia correlate with RAPD type and that SA and ornibactins are the most prevalent siderophores produced. Topics: Burkholderia cepacia; Cystic Fibrosis; Humans; Phenols; Pyridones; Random Amplified Polymorphic DNA Technique; Salicylates; Salicylic Acid; Siderophores; Thiazoles | 1998 |
Siderophore synthesis by mucoid Pseudomonas aeruginosa strains isolated from cystic fibrosis patients.
Nonmucoid Pseudomonas aeruginosa responds to iron deprivation by synthesizing the siderophores pyochelin and pyoverdine. When grown in iron-deficient medium, six mucoid P. aeruginosa strains isolated from cystic fibrosis patients synthesized copious amounts of the exopolysaccharide alginate. A procedure that eliminated the interference of alginate was developed so that siderophores could be extracted from the growth medium. All six isolates were then noted to produce both pyoverdine and pyochelin. This report thus confirms that mucoid P. aeruginosa, like its nonmucoid counterparts, elicits the siderophores commonly cited as those of the microbe. Topics: Cystic Fibrosis; Iron Chelating Agents; Oligopeptides; Phenols; Pigments, Biological; Pseudomonas aeruginosa; Pseudomonas Infections; Siderophores; Thiazoles | 1991 |
Production and utilization of pyochelin by clinical isolates of Pseudomonas cepacia.
Forty-three Pseudomonas cepacia isolates were screened for the production of pyochelin. Twenty-one (49%) produced pyochelin, and 22 (51%) were pyochelin negative. Of the 21 strains producing pyochelin, 18 were from patients with severe infections, 11 of which resulted in death. Of the 22 strains which did not produce pyochelin, 13 were from patients with mild or moderate infections. Pyochelin production by P. cepacia isolates infecting cystic fibrosis patients correlates with morbidity and mortality in these patients. Pyochelin was shown to stimulate the in vitro growth of P. cepacia in the presence of transferrin. P. cepacia isolates were able to accumulate 59Fe-pyochelin regardless of whether they produced this siderophore. Topics: Cystic Fibrosis; Humans; Iron Chelating Agents; Phenols; Pseudomonas; Pseudomonas Infections; Siderophores; Thiazoles; Transferrin | 1986 |