px-866 has been researched along with Glioblastoma* in 4 studies
1 trial(s) available for px-866 and Glioblastoma
Article | Year |
---|---|
Phase II study of PX-866 in recurrent glioblastoma.
Glioblastoma (GBM) is the most aggressive malignancy of the central nervous system in adults. Increased activity of the phosphatidylinositol-3-OH kinase (PI3K) signal transduction pathway is common. We performed a phase II study using PX-866, an oral PI3K inhibitor, in participants with recurrent GBM.. Patients with histologically confirmed GBM at first recurrence were given oral PX-866 at a dose of 8 mg daily. An MRI and clinical exam were done every 8 weeks. Tissue was analyzed for potential predictive markers.. Thirty-three participants (12 female) were enrolled. Median age was 56 years (range 35-78y). Eastern Cooperative Oncology Group performance status was 0-1 in 29 participants and 2 in the remainder. Median number of cycles was 1 (range 1-8). All participants have discontinued therapy: 27 for disease progression and 6 for toxicity (5 liver enzymes and 1 allergic reaction). Four participants had treatment-related serious adverse events (1 liver enzyme, 1 diarrhea, 2 venous thromboembolism). Other adverse effects included fatigue, diarrhea, nausea, vomiting, and lymphopenia. Twenty-four participants had a response of progression (73%), 1 had partial response (3%, and 8 (24%) had stable disease (median, 6.3 months; range, 3.1-16.8 months). Median 6-month progression-free survival was 17%. None of the associations between stable disease and PTEN, PIK3CA, PIK3R1, or EGFRvIII status were statistically significant.. PX-866 was relatively well tolerated. Overall response rate was low, and the study did not meet its primary endpoint; however, 21% of participants obtained durable stable disease. This study also failed to identify a statistically significant association between clinical outcome and relevant biomarkers in patients with available tissue. Topics: Administration, Oral; Adult; Aged; Antineoplastic Agents; Brain Neoplasms; Female; Glioblastoma; Gonanes; Humans; Male; Middle Aged; Phosphoinositide-3 Kinase Inhibitors; Treatment Outcome | 2015 |
3 other study(ies) available for px-866 and Glioblastoma
Article | Year |
---|---|
Inhibition of phosphatidylinositol 3-kinase by PX-866 suppresses temozolomide-induced autophagy and promotes apoptosis in glioblastoma cells.
Temozolomide (TMZ) is the most commonly used chemotherapeutic agent used to treat glioblastoma (GBM), which causes significant DNA damage to highly proliferative cells. Our observations have added to accumulating evidence that TMZ induces stress-responsive cellular programs known to promote cell survival, including autophagy. As such, targeting these survival pathways may represent new vulnerabilities of GBM after treatment with TMZ.. Using the T98G human glioma cell line, we assessed the molecular signaling associated with TMZ treatment, the cellular consequences of using the pan-PI3K inhibitor PX-866, and performed clonogenic assays to determine the effect sequential treatment of TMZ and PX-866 had on colony formation. Additionally, we also use subcutaneous GBM patient derived xenograft (PDX) tumors to show relative LC3 protein expression and correlations between survival pathways and molecular markers which dictate clinical responsiveness to TMZ.. The understanding of how TMZ induces survival pathways, such as autophagy, may offer new therapeutic vulnerabilities and opportunities to use sequential inhibition of alternate pro-survival pathways that regulate autophagy. As such, identification of additional ways to inhibit TMZ-induced autophagy could enhance the efficacy of TMZ. Topics: Apoptosis; Autophagy; Brain Neoplasms; Cell Line, Tumor; Glioblastoma; Gonanes; Humans; Phosphatidylinositol 3-Kinases; Phosphoinositide-3 Kinase Inhibitors; Signal Transduction; Temozolomide | 2019 |
Identification of novel synergistic targets for rational drug combinations with PI3 kinase inhibitors using siRNA synthetic lethality screening against GBM.
Several small molecules that inhibit the PI3 kinase (PI3K)-Akt signaling pathway are in clinical development. Although many of these molecules have been effective in preclinical models, it remains unclear whether this strategy alone will be sufficient to interrupt the molecular events initiated and maintained by signaling along the pathways because of the activation of other pathways that compensate for the inhibition of the targeted kinase. In this study, we performed a synthetic lethality screen to identify genes or pathways whose inactivation, in combination with the PI3K inhibitors PX-866 and NVPBEZ-235, might result in a lethal phenotype in glioblastoma multiforme (GBM) cells. We screened GBM cells (U87, U251, and T98G) with a large-scale, short hairpin RNA library (GeneNet), which contains 43 800 small interfering RNA sequences targeting 8500 well-characterized human genes. To decrease off-target effects, we selected overlapping genes among the 3 cell lines that synergized with PX-866 to induce cell death. To facilitate the identification of potential targets, we used a GSE4290 dataset and The Cancer Genome Atlas GBM dataset, identifying 15 target genes overexpressed in GBM tissues. We further analyzed the selected genes using Ingenuity Pathway Analysis software and showed that the 15 genes were closely related to cancer-promoting pathways, and a highly interconnected network of aberrations along the MYC, P38MAPK, and ERK signaling pathways were identified. Our findings suggest that inhibition of these pathways might increase tumor sensitivity to PX-866 and therefore represent a potential clinical therapeutic strategy. Topics: Brain Neoplasms; Cell Line, Tumor; Cell Proliferation; Drug Combinations; Drug Design; Drug Synergism; Genes, Lethal; Glioblastoma; Gonanes; Humans; Phosphoinositide-3 Kinase Inhibitors; RNA, Small Interfering; Signal Transduction | 2011 |
Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma.
The phosphatidylinositol-3-kinase (PI3K)/Akt oncogenic pathway is critical in glioblastomas. Loss of PTEN, a negative regulator of the PI3K pathway or activated PI3K/Akt pathway that drive increased proliferation, survival, neovascularization, glycolysis, and invasion is found in 70%-80% of malignant gliomas. Thus, PI3K is an attractive therapeutic target for malignant glioma. We report that a new irreversible PI3K inhibitor, PX-866, shows potent inhibitory effects on the PI3K/Akt signaling pathway in glioblastoma. PX-866 did not induce any apoptosis in glioma cells; however, an increase in autophagy was observed. PX-866 inhibited the invasive and angiogenic capabilities of cultured glioblastoma cells. In vivo, PX-866 inhibited subcutaneous tumor growth and increased the median survival time of animals with intracranial tumors. We also assessed the potential of proton magnetic resonance spectroscopy (MRS) as a noninvasive method to monitor response to PX-866. Our findings show that PX-866 treatment causes a drop in the MRS-detectable choline-to-NAA, ratio and identify this partial normalization of the tumor metabolic profile as a biomarker of molecular drug action. Our studies affirm that the PI3K pathway is a highly specific molecular target for therapies for glioblastoma and other cancers with aberrant PI3K/PTEN expression. Topics: Animals; Cell Line, Tumor; Glioblastoma; Gonanes; Humans; Mice; Mice, Nude; Phosphatidylinositol 3-Kinase; Phosphoinositide-3 Kinase Inhibitors; Xenograft Model Antitumor Assays | 2010 |