puromycin has been researched along with Malaria--Falciparum* in 2 studies
2 other study(ies) available for puromycin and Malaria--Falciparum
Article | Year |
---|---|
Discovery and development of 2-aminobenzimidazoles as potent antimalarials.
The emergence of Plasmodium falciparum resistance to frontline antimalarials, including artemisinin combination therapies, highlights the need for new molecules that act via novel mechanisms of action. Herein, we report the design, synthesis and antimalarial activity of a series of 2-aminobenzimidazoles, featuring a phenol moiety that is crucial to the pharmacophore. Two potent molecules exhibited IC Topics: Antimalarials; Benzimidazoles; Dose-Response Relationship, Drug; Drug Discovery; HEK293 Cells; Humans; Malaria, Falciparum; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Structure-Activity Relationship | 2021 |
Selective anti-malarial minor groove binders.
A set of 31 DNA minor groove binders (MGBs) with diverse structural features relating to both physical chemical properties and DNA binding sequence preference has been evaluated as potential drugs to treat Plasmodium falciparum infections using a chloroquine sensitive strain (3D7) and a chloroquine resistant strain (Dd2) in comparison with human embryonic kidney (HEK) cells as an indicator of mammalian cell toxicity. MGBs with an alkene link between the two N-terminal building blocks were demonstrated to be most active with IC50 values in the range 30-500nM and therapeutic ratios in the range 10->500. Many active compounds contained a C-alkylthiazole building block. Active compounds with logD7.4 values of approximately 3 or 7 were identified. Importantly the MGBs tested were essentially equally effective against both chloroquine sensitive and resistant strains. The results show that suitably designed MGBs have the potential for development into clinical candidates for antimalarial drugs effective against resistant strains of Plasmodia. Topics: Antimalarials; Dose-Response Relationship, Drug; HEK293 Cells; Humans; Malaria, Falciparum; Molecular Structure; Parasitic Sensitivity Tests; Plasmodium falciparum; Structure-Activity Relationship | 2016 |