punicalagin and Obesity

punicalagin has been researched along with Obesity* in 5 studies

Other Studies

5 other study(ies) available for punicalagin and Obesity

ArticleYear
[Punicalagin inhibits hepatic lipid deposition in obese mice via AMPK/ACC pathway].
    Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica, 2023, Volume: 48, Issue:7

    Hepatic lipid deposition is one of the basic manifestations of obesity, and nowadays pharmacological treatment is the most important tool. Punicalagin(PU), a polyphenol derived from pomegranate peel, is a potential anti-obesity substance. In this study, 60 C57BL/6J mice were randomly divided into a normal group and a model group. After establishing a model of simple obesity with a high-fat diet for 12 weeks, the successfully established rat models of obesity were then regrouped into a model group, an orlistat group, a PU low-dose group, a PU medium-dose group, and a PU high-dose group. The normal group was kept on routine diet and other groups continued to feed the high-fat diet. The body weight and food intake were measured and recorded weekly. After 8 weeks, the levels of the four lipids in the serum of each group of mice were determined by an automatic biochemical instrument. Oral glucose tole-rance and intraperitoneal insulin sensitivity were tested. Hemoxylin-eosin(HE) staining was applied to observe the hepatic and adipose tissues. The mRNA expression levels of peroxisome proliferators-activated receptor γ(PPARγ) and C/EBPα were determined by real-time quantitative polymerase chain reaction(Q-PCR), and the mRNA and protein expression levels of adenosine 5'-monophosphate-activated protein kinase(AMPK), anterior cingulate cortex(ACC), and carnitine palmitoyltransferase 1A(CPT1A) were determined by Western blot. Finally, the body mass, Lee's index, serum total glyceride(TG), serum total cholesterol(TC), and low-density lipoprotein cholesterol(LDL-C) levels were significantly higher and high-density lipoprotein cholesterol(HDL-C) levels were significantly lower in the model group as compared with the normal group. The fat deposition in the liver was significantly increased. The mRNA expression levels of hepatic PPARγ and C/EBPα and the protein expression level of ACC were increased, while the mRNA and protein expression levels of CPT-1α(CPT1A) and AMPK were decreased. After PU treatment, the above indexes of obese mice were reversed. In conclusion, PU can decrease the body weight of obese mice and control their food intake. It also plays a role in the regulation of lipid metabolism and glycometabolism metabolism, which can significantly improve hepatic fat deposition. Mechanistically, PU may regulate liver lipid deposition in obese mice by down-regulating lipid synthesis and up-regulating lipolysis through activation of the AMPK/ACC pathway.

    Topics: AMP-Activated Protein Kinases; Animals; Body Weight; Cholesterol; Diet, High-Fat; Lipid Metabolism; Lipids; Liver; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; PPAR gamma; Rats

2023
Punicalagin, a Pomegranate-Derived Ellagitannin, Suppresses Obesity and Obesity-Induced Inflammatory Responses Via the Nrf2/Keap1 Signaling Pathway.
    Molecular nutrition & food research, 2019, Volume: 63, Issue:22

    Punicalagin (PCG) is one of the most abundant phytochemicals found in pomegranates. The effects and mechanistic action of PCG on obesity and obesity-induced inflammatory and oxidant responses are investigated in vitro and in vivo.. The effect of PCG on adipogenesis is examined using Oil red O staining. The effects and mechanism of action of PCG on inflammatory responses are determined in adipocyte-conditioned medium (ACM)-cultured macrophages, a cell-to-cell contact system, and a transwell system. The effects of PCG on obesity and obesity-induced inflammatory/oxidant responses are examined in high-fat diet (HFD)-fed mice. PCG effectively suppresses lipid accumulation in adipocytes and adipocyte-induced inflammatory responses in adipocyte-macrophage co-culture systems. Small interfering RNA (siRNA) transfection indicates that the PCG-mediated anti-inflammatory effect is exerted via the nuclear factor erythroid 2-related factor 2/Kelch-like ECH-associated protein 1(Nrf2/Keap1) pathway. PCG administration results in a significant reduction in body and white adipose tissue (WAT) weights. PCG favorably regulates pro- and anti-inflammatory cytokines, downregulating nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Immunohistochemical (IHC) analysis demonstrates that PCG differentially modulates the distribution of complement component 3 receptor 4 subunit (CD11c) and cluster of differentiation 206 (CD206). PCG regulates the level of antioxidant and oxidant molecules by activating Nrf2/Keap1 signaling.. PCG ameliorates obesity and obesity-induced inflammatory responses via activation of Nrf2/Keap1 signaling, suggesting that PCG has potential as an oral agent to control obesity-mediated diseases.

    Topics: 3T3-L1 Cells; Adipogenesis; Animals; Heme Oxygenase-1; Hydrolyzable Tannins; Inflammation; Kelch-Like ECH-Associated Protein 1; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; NF-E2-Related Factor 2; Obesity; Reactive Oxygen Species; Signal Transduction

2019
Pomegranate extract and exercise provide additive benefits on improvement of immune function by inhibiting inflammation and oxidative stress in high-fat-diet-induced obesity in rats.
    The Journal of nutritional biochemistry, 2016, Volume: 32

    Obesity is reported to be associated with immune dysfunction and a state of low-grade, chronic inflammation. Either pomegranate extract (PomE) or exercise (Ex) has been shown to have antiobesity, anti-inflammatory and antioxidant effects. Nevertheless, no study has addressed the additive benefits of PomE and Ex on the restoration of obesity-induced immune defects.. The present work aims to study the effect of PomE and Ex as a combined intervention on immune function and the underlying mechanism involved in inflammation and oxidative stress in rats with high-fat-diet (HFD)-induced obesity.. Our results demonstrate that the combination of PomE and Ex showed additive benefits on inhibition of HFD-induced body weight increase and improvement of HFD-induced immune dysfunction, including (a) attenuating the abnormality of histomorphology of the spleen, (b) increasing the ratio of the CD4+:CD8+ T cell subpopulations in splenocytes and peripheral blood mononuclear cells (PBMC), (c) inhibition of apoptosis in splenocytes and PBMC, (d) normalizing peritoneal macrophage phenotypes and (e) restoring immunomodulating factors in serum. We also find that immune dysfunction in HFD-fed rats was associated with increased inflammatory cytokine secretion and oxidative stress biomarkers, and that the combination of PomE and Ex effectively inhibited the inflammatory response and decreased oxidative damage.. The effect of PomE and Ex as a combined intervention is greater than the effect of either PomE or Ex alone, showing that PomE and Ex may be additively effective in improving immune function in HFD-fed rats by inhibiting inflammation and decreasing oxidative stress.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Anti-Obesity Agents; Antioxidants; CD4-CD8 Ratio; Combined Modality Therapy; Diet, High-Fat; Dietary Supplements; Hydrolyzable Tannins; Immunity, Innate; Leukocytes, Mononuclear; Lythraceae; Macrophages, Peritoneal; Male; Obesity; Oxidative Stress; Physical Conditioning, Animal; Plant Extracts; Random Allocation; Rats, Sprague-Dawley; Spleen; Weight Gain

2016
Punicalagin, an active component in pomegranate, ameliorates cardiac mitochondrial impairment in obese rats via AMPK activation.
    Scientific reports, 2015, Sep-15, Volume: 5

    Obesity is associated with an increasing prevalence of cardiovascular diseases and metabolic syndrome. It is of paramount importance to reduce obesity-associated cardiac dysfunction and impaired energy metabolism. In this study, the activation of the AMP-activated protein kinase (AMPK) pathway by punicalagin (PU), a major ellagitannin in pomegranate was investigated in the heart of a rat obesity model. In male SD rats, eight-week administration of 150 mg/kg pomegranate extract (PE) containing 40% punicalagin sufficiently prevented high-fat diet (HFD)-induced obesity associated accumulation of cardiac triglyceride and cholesterol as well as myocardial damage. Concomitantly, the AMPK pathway was activated, which may account for prevention of mitochondrial loss via upregulating mitochondrial biogenesis and amelioration of oxidative stress via enhancing phase II enzymes in the hearts of HFD rats. Together with the normalized expression of uncoupling proteins and mitochondrial dynamic regulators, PE significantly prevented HFD-induced cardiac ATP loss. Through in vitro cultures, we showed that punicalagin was the predominant component that activated AMPK by quickly decreasing the cellular ATP/ADP ratio specifically in cardiomyocytes. Our findings demonstrated that punicalagin, the major active component in PE, could modulate mitochondria and phase II enzymes through AMPK pathway to prevent HFD-induced cardiac metabolic disorders.

    Topics: AMP-Activated Protein Kinases; Animals; Diet, High-Fat; Hydrolyzable Tannins; Lythraceae; Mitochondria, Heart; Myocardium; Myocytes, Cardiac; Obesity; Organelle Biogenesis; Oxidative Stress; Phosphorylation; Rats; Signal Transduction

2015
Mitochondrial dysfunction in obesity-associated nonalcoholic fatty liver disease: the protective effects of pomegranate with its active component punicalagin.
    Antioxidants & redox signaling, 2014, Oct-10, Volume: 21, Issue:11

    Punicalagin (PU) is one of the major ellagitannins found in the pomegranate (Punica granatum), which is a popular fruit with several health benefits. So far, no studies have evaluated the effects of PU on nonalcoholic fatty liver disease (NAFLD). Our work aims at studying the effect of PU-enriched pomegranate extract (PE) on high fat diet (HFD)-induced NAFLD.. PE administration at a dosage of 150 mg/kg/day significantly inhibited HFD-induced hyperlipidemia and hepatic lipid deposition. As major contributors to NAFLD, increased expression of pro-inflammatory cytokines such as tumor necrosis factor-alpha, interleukins 1, 4, and 6 as well as augmented oxidative stress in hepatocytes followed by nuclear factor (erythroid-derived-2)-like 2 (Nrf2) activation were normalized through PE supplementation. In addition, PE treatment reduced uncoupling protein 2 (UCP2) expression, restored ATP content, suppressed mitochondrial protein oxidation, and improved mitochondrial complex activity in the liver. In contrast, mitochondrial content was not affected despite increased peroxisomal proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and elevated expression of genes related to mitochondrial beta-oxidation after PE treatment. Finally, PU was identified as the predominant active component of PE with regard to the lowering of triglyceride and cholesterol content in HepG2 cells, and both PU- and PE-protected cells from palmitate induced mitochondrial dysfunction and insulin resistance.. Our work presents the beneficial effects of PE on obesity-associated NAFLD and multiple risk factors. PU was proposed to be the major active component.. By promoting mitochondrial function, eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of NAFLD.

    Topics: Animals; Body Weight; Cholesterol; Diet, High-Fat; Disease Models, Animal; Hep G2 Cells; Humans; Hydrolyzable Tannins; Inflammation; Insulin Resistance; Lipid Metabolism; Liver; Lythraceae; Male; Mitochondria; Non-alcoholic Fatty Liver Disease; Obesity; Oxidative Stress; Plant Extracts; Rats; Sterol Regulatory Element Binding Protein 1; Triglycerides

2014