pulmicort and Prostatic-Neoplasms

pulmicort has been researched along with Prostatic-Neoplasms* in 2 studies

Other Studies

2 other study(ies) available for pulmicort and Prostatic-Neoplasms

ArticleYear
Genome-wide DNA methylation modified by soy phytoestrogens: role for epigenetic therapeutics in prostate cancer?
    Omics : a journal of integrative biology, 2015, Volume: 19, Issue:4

    In prostate cancer, DNA methylation is significantly associated with tumor initiation, progression, and metastasis. Previous studies have suggested that soy phytoestrogens might regulate DNA methylation at individual candidate gene loci and that they play a crucial role as potential therapeutic agents for prostate cancer. The purpose of our study was to examine the modulation effects of phytoestrogens on a genome-wide scale in regards to DNA methylation in prostate cancer. Prostate cancer cell lines DU-145 and LNCaP were treated with 40 μM of genistein and 110 μM of daidzein. DNMT inhibitor 5-azacytidine (2 μM) and the methylating agent budesonide (2 μM) were used to compare their demethylation/methylation effects with phytoestrogens. The regulatory effects of phytoestrogens on DNA methylation were analyzed by using a methyl-DNA immunoprecipitation method coupled with Human DNA Methylation Microarrays (MeDIP-chip). We observed that the methylation profiles of 58 genes were altered by genistein and daidzein treatments in DU-145 and LNCaP prostate cancer cells. In addition, the methylation frequencies of the MAD1L1, TRAF7, KDM4B, and hTERT genes were remarkably modified by genistein treatment. Our results suggest that the modulation effects of phytoestrogens on DNA methylation essentially lead to inhibition of cell growth and induction of apoptosis. Genome-wide methylation profiling reported here suggests that epigenetic regulation mechanisms and, by extension, epigenetics-driven novel therapeutic candidates warrant further consideration in future "omics" studies of prostate cancer.

    Topics: Antimetabolites, Antineoplastic; Apoptosis; Azacitidine; Budesonide; Cell Line, Tumor; Cell Proliferation; DNA Methylation; DNA, Neoplasm; Epigenesis, Genetic; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Oligonucleotide Array Sequence Analysis; Phytoestrogens; Prostatic Neoplasms

2015
Comparative effects of soy phytoestrogens and 17β-estradiol on DNA methylation of a panel of 24 genes in prostate cancer cell lines.
    Nutrition and cancer, 2014, Volume: 66, Issue:3

    Major phytoestrogens genistein and daidzein have been reported to have the ability to reverse DNA methylation in cancer cell lines. The mechanism by which genistein and daidzein have an inhibiting action on DNA methylation is not well understood. The aim of this study was to investigate the effects of soy phytoestrogens and the natural estrogen 17β-estradiol (E2) to determine whether one of the estrogen receptors is mobilized for the action of these compounds on DNA methylation. We also made a comparative study with a DNA methylation inhibitor (5-azacytidine) and a DNA methylation activator (budesonide). Three prostate cell lines, PC-3, DU-145, and LNCaP, were treated with 40 μM genistein, 110 μM daidzein, 2 μM budesonide, 2 μM 5-azacytidine, and 10 μM E2. In these 3 human prostate cancer cell lines, we performed methylation quantification using methyl-profiler-DNA-methylation analysis. Soy phytoestrogens and E2 induced a demethylation of all the promoter regions studied except for those that were unmethylated in control cells. Our results showed that E2 induces, like soy phytoestrogen, a decrease in DNA methylation in prostate cancer cell lines. This action may be mediated through ERβ.

    Topics: Azacitidine; Budesonide; Cell Line, Tumor; DNA Methylation; Estradiol; Estrogen Receptor beta; Gene Expression Regulation, Neoplastic; Genistein; Glycine max; Humans; Isoflavones; Male; Phytoestrogens; Promoter Regions, Genetic; Prostatic Neoplasms

2014