psoralidin has been researched along with Osteoporosis* in 2 studies
1 review(s) available for psoralidin and Osteoporosis
Article | Year |
---|---|
Mechanisms explaining the efficacy of psoralidin in cancer and osteoporosis, a review.
Psoralidin (PSO) is a natural phenolic coumarin that is extracted from the seeds of Psoralea corylifolia L. PSO possesses a variety of pharmacological activities, including anti-oxidative, antibacterial, anti-inflammatory, anti-depressive and estrogenic-like effects. Other studies have indicated that PSO plays a beneficial role in multiple disease, especially cancer and osteoporosis. In this review, we first outline the basic background of PSO. Then we introduced the molecular mechanisms and signaling pathways of PSO in multiple cancers to elucidate its anticancer potential via inducing oxidative stress and apoptosis, inhibiting proliferation, promoting autophagy-dependent cell death, and activating the estrogen receptors (ER)-signaling pathway. Finally, we recommend the direction of future investigations. In general, the information compiled in this paper should serve as a comprehensive repository of information to help design PSO in other research and future efforts. Topics: Animals; Antineoplastic Agents; Benzofurans; Coumarins; Humans; Neoplasms; Osteoporosis | 2019 |
1 other study(ies) available for psoralidin and Osteoporosis
Article | Year |
---|---|
Psoralidin, a prenylated coumestan, as a novel anti-osteoporosis candidate to enhance bone formation of osteoblasts and decrease bone resorption of osteoclasts.
Traditional Chinese medicines (TCM) have been proven to prevent osteoporosis, but their clinical applications are not widely recognized due to their complicated ingredients. Psoralidin, a prenylated coumestan, has been reported to prevent bone loss of ovariectomized rats, but detailed mechanisms are still not clear. In current study, we found that both psoralidin and coumestrol promoted osteoblast proliferation and differentiation, as evidenced by improvements in cell proliferation and alkaline phosphatase activity; increased formation of ALP colonies and calcified nodules; enhanced secretion of collagen-I, BMP-2, osteocalcin and osteopontin; and stimulation of the expression of IGF-1, β-catenin, Runx-2, Osterix, and OPG, as well as the mRNA ratio of OPG/RANKL, while significantly decreasing the expression of RANKL. In addition, both psoralidin and coumestrol inhibited osteoclast formation and osteoclastic bone resorption, as demonstrated by the lower tartrate-resistant acid phosphatase activity and smaller area, with fewer resorption pits formed. Interestingly, psoralidin showed much stronger effects than coumestrol at enhancing osteoblast proliferation/differentiation or inhibiting osteoclast differentiation and bone resorption. Moreover, we found that both psoralidin and coumestrol suppressed COX-2 and ROS production in rat osteoblastic calvarias cells, and psoralidin showed stronger effects than coumestrol. Furthermore, we detected that by blocking estrogen receptors with ICI 182.780 (an estrogen receptor antagonist), the osteoprotective effects of psoralidin and coumestrol were also blocked. Our findings demonstrated that psoralidin and coumestrol exert their bone-protective effects by enhancing bone formation of osteoblasts and inhibiting bone resorption of osteoclasts. These roles might be mediated by their antioxidant activity and transduced through estrogen receptor signaling. Topics: Alkaline Phosphatase; Animals; Benzofurans; Bone Resorption; Cell Differentiation; Cell Proliferation; Coumarins; Dose-Response Relationship, Drug; Osteoclasts; Osteogenesis; Osteoporosis; Prenylation; Rats; Rats, Sprague-Dawley; Skull | 2017 |