psammaplin-a and Glioblastoma

psammaplin-a has been researched along with Glioblastoma* in 1 studies

Other Studies

1 other study(ies) available for psammaplin-a and Glioblastoma

ArticleYear
DNMT (DNA methyltransferase) inhibitors radiosensitize human cancer cells by suppressing DNA repair activity.
    Radiation oncology (London, England), 2012, Mar-20, Volume: 7

    Histone modifications and DNA methylation are two major factors in epigenetic phenomenon. Unlike the histone deacetylase inhibitors, which are known to exert radiosensitizing effects, there have only been a few studies thus far concerning the role of DNA methyltransferase (DNMT) inhibitors as radiosensitizers. The principal objective of this study was to evaluate the effects of DNMT inhibitors on the radiosensitivity of human cancer cell lines, and to elucidate the mechanisms relevant to that process.. A549 (lung cancer) and U373MG (glioblastoma) cells were exposed to radiation with or without six DNMT inhibitors (5-azacytidine, 5-aza-2'-deoxycytidine, zebularine, hydralazine, epigallocatechin gallate, and psammaplin A) for 18 hours prior to radiation, after which cell survival was evaluated via clonogenic assays. Cell cycle and apoptosis were analyzed via flow cytometry. Expressions of DNMT1, 3A/3B, and cleaved caspase-3 were detected via Western blotting. Expression of γH2AX, a marker of radiation-induced DNA double-strand break, was examined by immunocytochemistry.. Pretreatment with psammaplin A, 5-aza-2'-deoxycytidine, and zebularine radiosensitized both A549 and U373MG cells. Pretreatment with psammaplin A increased the sub-G1 fraction of A549 cells, as compared to cells exposed to radiation alone. Prolongation of γH2AX expression was observed in the cells treated with DNMT inhibitors prior to radiation as compared with those treated by radiation alone.. Psammaplin A, 5-aza-2'-deoxycytidine, and zebularine induce radiosensitivity in both A549 and U373MG cell lines, and suggest that this effect might be associated with the inhibition of DNA repair.

    Topics: Azacitidine; Caspase 3; Catechin; Cell Line, Tumor; Cytidine; Decitabine; Disulfides; DNA (Cytosine-5-)-Methyltransferase 1; DNA (Cytosine-5-)-Methyltransferases; DNA Breaks, Double-Stranded; DNA Methyltransferase 3A; DNA Methyltransferase 3B; DNA Repair; Enzyme Induction; Gene Expression Regulation, Neoplastic; Glioblastoma; Histones; Humans; Hydralazine; Inhibitory Concentration 50; Lung Neoplasms; Neoplasm Proteins; Radiation-Sensitizing Agents; Tumor Stem Cell Assay; Tyrosine

2012