protopanaxadiol and Memory-Disorders

protopanaxadiol has been researched along with Memory-Disorders* in 3 studies

Other Studies

3 other study(ies) available for protopanaxadiol and Memory-Disorders

ArticleYear
20(S)-protopanaxadiol (PPD) alleviates scopolamine-induced memory impairment via regulation of cholinergic and antioxidant systems, and expression of Egr-1, c-Fos and c-Jun in mice.
    Chemico-biological interactions, 2018, Jan-05, Volume: 279

    20(S)-protopanaxadiol (PPD) possesses various biological properties, including anti-inflammatory, antitumor and anti-fatigue properties. Recent studies found that PPD functioned as a neurotrophic agent to ameliorate the sensory deficit caused by glutamate-induced excitotoxicity through its antioxidant effects and exhibited strong antidepressant-like effects in vivo. The objective of the present study was first to investigate the effect of PPD in scopolamine (SCOP)-induced memory deficit in mice and the potential mechanisms involved. In this study, mice were pretreated with PPD (20 and 40 μmol/kg) and donepezil (1.6 mg/kg) intraperitoneally (i.p) for 14 days. Then, open field test was used to assess the effect of PPD on the locomotor activity and mice were daily injected with SCOP (0.75 mg/kg) to induce cognitive deficits and then subjected to behavioral tests by object location recognition (OLR) experiment and Morris water maze (MWM) task. The cholinergic system function, oxidative stress biomarkers and protein expression of Egr-1, c-Fos, and c-Jun in mouse hippocampus were examined. PPD was found to significantly improve the performance of amnesia mice in OLR and MWM tests. PPD regulated cholinergic function by inhibiting SCOP-induced elevation of acetylcholinesterase (AChE) activity, decline of choline acetyltransferase (ChAT) activity and decrease of acetylcholine (Ach) level. PPD suppressed oxidative stress by increasing activities of antioxidant enzymes such as superoxide dismutase (SOD) and lowering maleic diadehyde (MDA) level. Additionally, PPD significantly elevated the expression of Egr-1, c-Fos, and c-Jun in hippocampus at protein level. Taken together, all these results suggested that 20(S)-protopanaxadiol (PPD) may be a candidate compound for the prevention against memory loss in some neurodegenerative diseases such as Alzheimer's disease (AD).

    Topics: Animals; Antioxidants; Dose-Response Relationship, Drug; Drug Administration Schedule; Early Growth Response Protein 1; Gene Expression Regulation; Hippocampus; JNK Mitogen-Activated Protein Kinases; Maze Learning; Memory Disorders; Mice; Parasympathetic Nervous System; Proto-Oncogene Proteins c-fos; Sapogenins; Scopolamine

2018
The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice.
    Brain research bulletin, 2018, Volume: 137

    Sleep deprivation (SD) is associated with oxidative stress that causes learning and memory impairment. 20(S)-Protopanaxadiol (PPD), one of the protopanaxadiol-type saponins, has antioxidant and neuroprotective effect. This study was designed to research the protective effect of PPD against cognitive deficits induced by chronic sleep deprivation (CSD) in mice. The CSD model was induced by subjecting the mice to our self-made Sleep Interruption Apparatus (SIA) continuously for 14 days. The memory enhancing effects of PPD were evaluated by behavioral tests and the related mechanism was further explored by observing the oxidative stress changes in the cortex and hippocampus of mice. The results revealed that PPD (20 and 40 μmol/kg, i.p.) administration significantly improved the cognitive performance of CSD model mice in object location recognition experiment, novel object recognition task and Morris water maze test. Furthermore, PPD effectively restored the levels/activities of antioxidant defense biomarkers in the cortex and hippocampus, including the superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, glutathione (GSH), and lipid peroxidation (LPO). In conclusion, PPD could attenuate cognitive deficits induced by CSD, and the neuroprotective effect of PPD might be mediated by alleviation of oxidative stress. It was assumed that PPD has the potential to be a neuroprotective substance for cognition dysfunction.

    Topics: Animals; Brain; Chronic Disease; Dose-Response Relationship, Drug; Lipid Peroxidation; Male; Maze Learning; Memory Disorders; Mice, Inbred ICR; Motor Activity; Neuroprotective Agents; Nootropic Agents; Oxidative Stress; Random Allocation; Recognition, Psychology; Sapogenins; Sleep Deprivation; Spatial Memory

2018
Abeta(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, A metabolite of protopanaxadiol-type saponins.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2004, Volume: 29, Issue:5

    We previously screened neurite outgrowth activities of several Ginseng drugs in human neuroblastoma, and demonstrated that protopanaxadiol (ppd)-type saponins were active constituents. Since ppd-type saponins are known to be completely metabolized to 20-O-beta-D-glucopyranosyl-20(S)-protopanaxadiol (M1) by intestinal bacteria when taken orally, M1 and ginsenoside Rb1, as a representative of ppd-type saponins, were examined for cognitive disorder. In a mouse model of Alzheimer's disease (AD) by Abeta(25-35) i.c.v. injection, impaired spatial memory was recovered by p.o. administration of ginsenoside Rb1 or M1. Although the expression levels of phosphorylated NF-H and synaptophysin were reduced in the cerebral cortex and the hippocampus of Abeta(25-35)-injected mice, their levels in ginsenoside Rb1- and M1-treated mice were almost completely recovered up to control levels. Potencies of the effects were not different between ginsenoside Rb1 and M1 when given orally, suggesting that most of the ginsenoside Rb1 may be metabolized to M1, and M1 is an active principal of ppd-type saponins for the memory improvement. In cultured rat cortical neurons, M1 showed extension activity of axons, but not dendrites. The axon-specific outgrowth was seen even when neuritic atrophy had already progressed in response to administration of Abeta(25-35) as well as in the normal condition. These results suggest that M1 has axonal extension activity in degenerated neurons, and improve memory disorder and synaptic loss induced by Abeta(25-35). M1 was shown to be effective in vitro and in vivo, indicating that Ginseng drugs containing ppd-type saponins may reactivate neuronal function in AD by p.o. administration.

    Topics: Amyloid beta-Peptides; Animals; Atrophy; Axons; Female; Ginsenosides; Image Processing, Computer-Assisted; Immunohistochemistry; Male; Maze Learning; Memory Disorders; Mice; Motor Activity; Neurites; Peptide Fragments; Pregnancy; Rats; Rats, Sprague-Dawley; Sapogenins; Saponins; Synapses; Triterpenes

2004