protopanaxadiol and Chronic-Disease

protopanaxadiol has been researched along with Chronic-Disease* in 3 studies

Other Studies

3 other study(ies) available for protopanaxadiol and Chronic-Disease

ArticleYear
Antidepressant-like effects of 20(S)-protopanaxadiol in a mouse model of chronic social defeat stress and the related mechanisms.
    Phytotherapy research : PTR, 2019, Volume: 33, Issue:10

    20(S)-Protopanaxadiol (PPD) is a basic aglycone of the dammarane triterpenoid saponins and exerts antidepressant-like effects on behaviour in the forced swimming test (FST) and tail suspension test (TST) and in rat olfactory bulbectomy depression models. However, the antidepressant effects of PPD have not been studied thoroughly. The objective of the present study was first to investigate the effect of PPD on depression behaviours induced by chronic social defeat stress (CSDS) in mice. The results showed that CSDS was effective in producing depression-like behaviours in mice, as indicated by decreased responses in the social interaction test, sucrose preference test, TST, and FST, and that this effect was accompanied by noticeable alterations in the levels of oxidative markers (superoxide dismutase, catalase, and lipid peroxidation) and monoamines (5-HT and NE) in the hippocampus and serum corticosterone levels. Additionally, western blot analysis revealed that CSDS exposure significantly downregulated BDNF, p-TrkB/TrkB, p-Akt/Akt, and p-mTOR/mTOR protein expression in the hippocampus. Remarkably, chronic PPD treatment significantly ameliorated these behavioral and biochemical alterations associated withCSDS-induced depression. Our results suggest that PPD exerts antidepressant-like effects in mice with CSDS-induced depression and that this effect may be mediated by the normalization of neurotransmitter and corticosterone levels and the alleviation of oxidative stress, as well as the enhancement of the PI3K/Akt/mTOR-mediated BDNF/TrkB pathway.

    Topics: Animals; Antidepressive Agents; Chronic Disease; Corticosterone; Depression; Disease Models, Animal; Hippocampus; Male; Mice; Mice, Inbred C57BL; Oxidative Stress; Rats; Sapogenins; Stress, Psychological

2019
The protective effect of 20(S)-protopanaxadiol (PPD) against chronic sleep deprivation (CSD)-induced memory impairments in mice.
    Brain research bulletin, 2018, Volume: 137

    Sleep deprivation (SD) is associated with oxidative stress that causes learning and memory impairment. 20(S)-Protopanaxadiol (PPD), one of the protopanaxadiol-type saponins, has antioxidant and neuroprotective effect. This study was designed to research the protective effect of PPD against cognitive deficits induced by chronic sleep deprivation (CSD) in mice. The CSD model was induced by subjecting the mice to our self-made Sleep Interruption Apparatus (SIA) continuously for 14 days. The memory enhancing effects of PPD were evaluated by behavioral tests and the related mechanism was further explored by observing the oxidative stress changes in the cortex and hippocampus of mice. The results revealed that PPD (20 and 40 μmol/kg, i.p.) administration significantly improved the cognitive performance of CSD model mice in object location recognition experiment, novel object recognition task and Morris water maze test. Furthermore, PPD effectively restored the levels/activities of antioxidant defense biomarkers in the cortex and hippocampus, including the superoxide dismutase (SOD) enzyme activity, catalase (CAT) enzyme activity, glutathione (GSH), and lipid peroxidation (LPO). In conclusion, PPD could attenuate cognitive deficits induced by CSD, and the neuroprotective effect of PPD might be mediated by alleviation of oxidative stress. It was assumed that PPD has the potential to be a neuroprotective substance for cognition dysfunction.

    Topics: Animals; Brain; Chronic Disease; Dose-Response Relationship, Drug; Lipid Peroxidation; Male; Maze Learning; Memory Disorders; Mice, Inbred ICR; Motor Activity; Neuroprotective Agents; Nootropic Agents; Oxidative Stress; Random Allocation; Recognition, Psychology; Sapogenins; Sleep Deprivation; Spatial Memory

2018
Snailase preparation of ginsenoside M1 from protopanaxadiol-type ginsenoside and their protective effects against CCl4-induced chronic hepatotoxicity in mice.
    Molecules (Basel, Switzerland), 2011, Dec-06, Volume: 16, Issue:12

    To investigate the protective effects of protopanaxadiol-type ginsenoside (PDG) and its metabolite ginsenoside M1 (G-M1) on carbon tetrachloride (CCl(4))-induced chronic liver injury in ICR mice, we carried out conversion of protopanaxadiol-type ginsenosides to ginsenoside M1 using snailase. The optimum time for the conversion was 24 h at a constant pH of 4.5 and an optimum temperature of 50 °C. The transformation products were identified by high-performance liquid chromatography and electrospray ion-mass spectrometry. Subsequently, most of PDG was decomposed and converted into G-M1 by 24 h post-reaction. During the study on hepatoprotective in a mice model of chronic liver injury, PDG or G-M1 supplement significantly ameliorated the CCl(4)-induced liver lesions, lowered the serum levels of select hepatic enzyme markers (alanine aminotransferase, ALT, and aspartate aminotransferase, AST) and malondialdehyde and increased the activity of superoxide dismutase in liver. Histopathology of the liver tissues showed that PDG and G-M1 attenuated the hepatocellular necrosis and led to reduction of inflammatory cell infiltration. Therefore, the results of this study show that PDG and G-M1 can be proposed to protect the liver against CCl(4)-induced oxidative injury in mice, and the hepatoprotective effect might be attributed to amelioration of oxidative stress.

    Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Biotransformation; Body Weight; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Chronic Disease; Ginsenosides; Liver; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Organ Size; Protective Agents; Sapogenins; Snails; Spectrometry, Mass, Electrospray Ionization; Superoxide Dismutase; Tissue Extracts

2011