protopanaxadiol and Carcinoma--Non-Small-Cell-Lung

protopanaxadiol has been researched along with Carcinoma--Non-Small-Cell-Lung* in 2 studies

Other Studies

2 other study(ies) available for protopanaxadiol and Carcinoma--Non-Small-Cell-Lung

ArticleYear
Transcriptome Analysis of the Inhibitory Effects of 20(S)-Protopanaxadiol on NCI-H1299 Non-Small Cell Lung Cancer Cells.
    Molecules (Basel, Switzerland), 2023, Jul-29, Volume: 28, Issue:15

    Lung cancer seriously threatens human health. To explore the molecular mechanism of 20(S)-Protopanaxadiol (PPD) on human non-small cell lung cancer cells, we investigated the transcriptional profile of PPD-treated NCI-H1299 cells. Cell proliferation, cell cycle, and apoptosis were detected using cell counting kit-8 and flow cytometry, respectively. Differentially expressed genes (DEGs) between PPD-treated and untreated cells were determined using RNA sequencing and bioinformatic analysis. Protein phosphorylation was detected using Western blotting. Data of mRNA expression profiles of lung cancer were from The Cancer Genome Atlas (TCGA) and analyzed using R software version 4.3.1. PPD showed an inhibitory effect on the proliferation of NCI-H1299 cells and induced apoptosis. There were 938 upregulated genes and 466 downregulated genes in PPD-treated cells, and DEGs were primarily enriched in the MAPK signaling pathway. The detection of phosphorylation revealed that the phosphorylation of ERK and p38 MAPK was significantly reduced in PPD-treated cells. Further comparison of PPD-regulated DEGs with clinical data of lung adenocarcinoma demonstrated that most downregulated genes in tumor tissues were upregulated in PPD-treated cells or vice versa. Two PPD-downregulated genes

    Topics: Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Proliferation; Gene Expression Profiling; Humans; Lung Neoplasms; p38 Mitogen-Activated Protein Kinases

2023
Quantitative Proteomics Combined with Affinity MS Revealed the Molecular Mechanism of Ginsenoside Antitumor Effects.
    Journal of proteome research, 2019, 05-03, Volume: 18, Issue:5

    Ginsenosides have previously been demonstrated to effectively inhibit cancer cell growth and survival in both animal models and cell lines. However, the specific ginsenoside component that is the active ingredient for cancer treatment through interaction with a target protein remains unknown. By an integrated quantitative proteomics approach via affinity mass spectrum (MS) technology, we deciphered the core structure of the ginsenoside active ingredient derived from crude extracts of ginsenosides and progressed toward identifying the target protein that mediates its anticancer activity. The Tandem Mass Tag (TMT) labeling quantitative proteomics technique acquired 55620 MS/MS spectra that identified 5499 proteins and 3045 modified proteins. Of these identified proteins, 224 differentially expressed proteins and modified proteins were significantly altered in nonsmall cell lung cancer cell lines. Bioinformatics tools for comprehensive analysis revealed that the Ras protein played a general regulatory role in many functional pathways and was probably the direct target protein of a compound in ginsenosides. Then, affinity MS screening based on the Ras protein identified 20(s)-protopanaxadiol, 20(s)-Ginsenoside Rh2, and 20(s)-Ginsenoside Rg3 had affinity with Ras protein under different conditions. In particular, 20(s)-protopanaxadiol, whose derivatives are the reported antitumor compounds 20(s)-Ginsenoside Rh2 and 20(s)-Ginsenoside Rg3 that have a higher affinity for Ras via a low KD of 1.22 μM and the mutation sites of G12 and G60, was demonstrated to play a core role in those interactions. Moreover, the molecular mechanism and bioactivity assessment results confirmed the identity of the chemical ligand that was directly acting on the GTP binding pocket of Ras and shown to be effective in cancer cell bioactivity profiles.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; Cell Survival; Ginsenosides; Guanosine Triphosphate; Humans; Lung Neoplasms; Molecular Docking Simulation; Neoplasm Proteins; Protein Binding; Protein Conformation; Proteomics; ras Proteins; Sapogenins

2019