protopanaxadiol and Body-Weight

protopanaxadiol has been researched along with Body-Weight* in 3 studies

Other Studies

3 other study(ies) available for protopanaxadiol and Body-Weight

ArticleYear
Protopanaxadiol alleviates obesity in high-fat diet-fed mice via activation of energy-sensing neuron in the paraventricular nucleus of hypothalamus.
    Biochemical and biophysical research communications, 2019, 06-11, Volume: 513, Issue:4

    Obesity is one of the most important health problems worldwide. Panax ginseng has been reported to exert anti-obesity effect. However, the active constituents and the underlying mechanism remained uncertain. This study uncovered the anti-obesity effect of protopanaxadiol (PPD) and its potential mechanism. To investigate the anti-obesity effect of PPD, high-fat diet induced obesity (DIO) C57BL/6 mice were treated with PPD by both intraperitoneal injection (i.p.) and oral administration. Body weight and food intake were recorded. Energy expenditure was measured by CLAMS metabolic cages. For mechanism study, C-Fos in the hypothalamus of the mice was stained following the intracerebroventricular (i.c.v.) injection of PPD. Our results showed that with both injection and feeding, PPD reduced body weight, inhibited food intake, increased energy expenditure and improved liver damage in DIO mice. Mechanistically, i.c.v. injection of PPD inhibited feeding and increased C-Fos expression in paraventricular nucleus of the hypothalamus (PVH). The results suggest that PPD may reduce body weight of DIO mice via the activation of PVH neurons and PPD is a potential therapeutic candidate for the treatment of obesity.

    Topics: Animals; Body Weight; Diet, High-Fat; Energy Metabolism; Liver; Mice; Mice, Inbred C57BL; Neurons; Obesity; Paraventricular Hypothalamic Nucleus; Sapogenins

2019
Snailase preparation of ginsenoside M1 from protopanaxadiol-type ginsenoside and their protective effects against CCl4-induced chronic hepatotoxicity in mice.
    Molecules (Basel, Switzerland), 2011, Dec-06, Volume: 16, Issue:12

    To investigate the protective effects of protopanaxadiol-type ginsenoside (PDG) and its metabolite ginsenoside M1 (G-M1) on carbon tetrachloride (CCl(4))-induced chronic liver injury in ICR mice, we carried out conversion of protopanaxadiol-type ginsenosides to ginsenoside M1 using snailase. The optimum time for the conversion was 24 h at a constant pH of 4.5 and an optimum temperature of 50 °C. The transformation products were identified by high-performance liquid chromatography and electrospray ion-mass spectrometry. Subsequently, most of PDG was decomposed and converted into G-M1 by 24 h post-reaction. During the study on hepatoprotective in a mice model of chronic liver injury, PDG or G-M1 supplement significantly ameliorated the CCl(4)-induced liver lesions, lowered the serum levels of select hepatic enzyme markers (alanine aminotransferase, ALT, and aspartate aminotransferase, AST) and malondialdehyde and increased the activity of superoxide dismutase in liver. Histopathology of the liver tissues showed that PDG and G-M1 attenuated the hepatocellular necrosis and led to reduction of inflammatory cell infiltration. Therefore, the results of this study show that PDG and G-M1 can be proposed to protect the liver against CCl(4)-induced oxidative injury in mice, and the hepatoprotective effect might be attributed to amelioration of oxidative stress.

    Topics: Alanine Transaminase; Animals; Antioxidants; Aspartate Aminotransferases; Biotransformation; Body Weight; Carbon Tetrachloride; Chemical and Drug Induced Liver Injury; Chromatography, High Pressure Liquid; Chronic Disease; Ginsenosides; Liver; Male; Malondialdehyde; Mice; Mice, Inbred ICR; Organ Size; Protective Agents; Sapogenins; Snails; Spectrometry, Mass, Electrospray Ionization; Superoxide Dismutase; Tissue Extracts

2011
Comparison of the antiobesity effects of the protopanaxadiol- and protopanaxatriol-type saponins of red ginseng.
    Phytotherapy research : PTR, 2009, Volume: 23, Issue:1

    A previous study demonstrated that ginseng crude saponins prevent obesity induced by a high-fat diet in rats. Ginseng crude saponins are known to contain a variety of bioactive saponins. The present study investigated and compared the antiobesity activity of protopanaxadiol (PD) and protopanaxatriol (PT) type saponins, major active compounds isolated from crude saponins. Male 4-week-old Sprague-Dawley rats were fed with normal diet (N) or high-fat diet (HF). After 5 weeks, the HF diet group was subdivided into the control HF diet, HF diet-PD and HF diet-PT group (50 mg/kg/day, 3 weeks, i.p.). Treatment with PD and PT in the HF diet group reduced the body weight, total food intake, fat contents, serum total cholesterol and leptin to levels equal to or below the N diet group. The hypothalamic expression of orexigenic neuropeptide Y was significantly decreased with PD or PT treatment, whereas that of anorexigenic cholecystokinin was increased, compared with the control HF diet group. In addition, PD type saponins had more potent antiobesity properties than PT saponins, indicating that PD-type saponins are the major components contributing to the antiobesity activities of ginseng crude saponins. The results suggest that the antiobesity activity of PD and PT type saponins may result from inhibiting energy gain, normalizing hypothalamic neuropeptides and serum biochemicals related to the control of obesity.

    Topics: Animals; Anti-Obesity Agents; Body Weight; Cholecystokinin; Cholesterol; Eating; Hypothalamus; Leptin; Male; Neuropeptide Y; Obesity; Panax; Rats; Rats, Sprague-Dawley; Sapogenins; Triglycerides

2009