protectin-d1 and Stroke

protectin-d1 has been researched along with Stroke* in 9 studies

Reviews

3 review(s) available for protectin-d1 and Stroke

ArticleYear
Dietary docosahexaenoic acid inhibits neurodegeneration and prevents stroke.
    Journal of neuroscience research, 2021, Volume: 99, Issue:2

    Stroke severely impairs quality of life and has a high mortality rate. On the other hand, dietary docosahexaenoic acid (DHA) prevents neuronal damage. In this review, we describe the effects of dietary DHA on ischemic stroke-associated neuronal damage and its role in stroke prevention. Recent epidemiological studies have been conducted to analyze stroke prevention through DHA intake. The effects of dietary intake and supply of DHA to neuronal cells, DHA-mediated inhibition of neuronal damage, and its mechanism, including the effects of the DHA metabolite, neuroprotectin D1 (NPD1), were investigated. These studies revealed that DHA intake was associated with a reduced risk of stroke. Moreover, studies have shown that DHA intake may reduce stroke mortality rates. DHA, which is abundant in fish oil, passes through the blood-brain barrier to accumulate as a constituent of phospholipids in the cell membranes of neuronal cells and astrocytes. Astrocytes supply DHA to neuronal cells, and neuronal DHA, in turn, activates Akt and Raf-1 to prevent neuronal death or damage. Therefore, DHA indirectly prevents neuronal damage. Furthermore, NDP1 blocks neuronal apoptosis. DHA, together with NPD1, may block neuronal damage and prevent stroke. The inhibitory effect on neuronal damage is achieved through the antioxidant (via inducing the Nrf2/HO-1 system) and anti-inflammatory effects (via promoting JNK/AP-1 signaling) of DHA.

    Topics: alpha-Linolenic Acid; Animals; Anti-Inflammatory Agents; Antioxidants; Apoptosis; Biological Availability; Biological Transport; Blood-Brain Barrier; Brain Damage, Chronic; Dietary Fats; Docosahexaenoic Acids; Fatty Acid-Binding Proteins; Fish Oils; Humans; Incidence; Ischemic Stroke; Membrane Lipids; Mice; Neoplasm Proteins; Nerve Degeneration; Nerve Tissue Proteins; Neurons; Plant Oils; Signal Transduction; Stroke; Symporters

2021
Docosahexaenoic acid neurolipidomics.
    Prostaglandins & other lipid mediators, 2010, Volume: 91, Issue:3-4

    Mediator lipidomics is a field of study concerned with the characterization, structural elucidation and bioactivity of lipid derivatives actively generated by enzymatic activity. It is well known that omega-3 fatty acids are beneficial for brain function. Docosahexaenoic acid [DHA; 4 22:6(n-3)] is the most abundant essential omega-3 fatty acid present in the brain and it has multiple mechanisms of exerting protective effects after cellular injury. Certain lipid species produced from DHA early during the reperfusion stage of brain ischemia-reperfusion injury are generated in order to help the cell cope as the injury progresses. We explore these newly discovered lipid mediators in order to understand their role in the cell. We have identified one of these potentially protective lipid mediators as a novel stereospecific DHA-derived fatty acid, called neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,15E,19Z hexaenoic acid). DHA also has important roles in pro-survival signaling cascades after ischemia-reperfusion in injury. It has been shown to accelerate AKT translocation and activation and has binding affinity with an important PPAR-gamma family of ligand-activated nuclear receptors that have been implicated in various aspects of lipid metabolism and have been shown to have anti-inflammatory actions. Here we present an overview of these mechanisms and discuss the potential of using DHA signaling in the development of treatments for the large population of patients suffering from the devastating consequences of stroke.

    Topics: Animals; Docosahexaenoic Acids; Humans; Lipid Metabolism; Nervous System; Proto-Oncogene Proteins c-akt; Stroke

2010
Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease.
    Journal of lipid research, 2009, Volume: 50 Suppl

    Docosahexaenoic acid (DHA), the main omega-3 fatty acid, is concentrated and avidly retained in membrane phospholipids of the nervous system. DHA is involved in brain and retina function, aging, and neurological and psychiatric/behavioral illnesses. Neuroprotectin D1 (NPD1), the first-identified stereoselective bioactive product of DHA, exerts neuroprotection in models of experimental stroke by down-regulating brain ischemia reperfusion (BIR)-induced leukocyte infiltration, proinflammatory signaling, and infarct size. Moreover, NPD1 inhibits cytokine-mediated cyclooxygenase-2 (COX-2) expression. Photoreceptor membranes display the highest content of DHA of any cell. Retinal pigment epithelial cells participate in the phagocytosis of the tips of photoreceptor cells (photoreceptor outer segment renewal). There is a DHA retrieval-intercellular mechanism between both types of cells that conserves this fatty acid during this process. NPD1 promotes homeostatic regulation of the integrity of these two cells, particularly during oxidative stress, and this protective signaling may be relevant in retinal degenerative diseases. Moreover, neurotrophins are NPD1-synthesis agonists, and NPD1 content is decreased in the CA1 region of the hippocampus of Alzheimer's patients. Overall, NPD1 promotes brain cell survival via the induction of antiapoptotic and neuroprotective gene-expression programs that suppress Abeta42 production and its neurotoxicity. Thus, NPD1 elicits potent cell-protective, anti-inflammatory, prosurvival repair signaling.

    Topics: Alzheimer Disease; Animals; Cell Survival; Docosahexaenoic Acids; Humans; Retinal Degeneration; Signal Transduction; Stroke

2009

Trials

1 trial(s) available for protectin-d1 and Stroke

ArticleYear
The Association of Free Fatty Acids and Eicosanoids with the Severity of Depressive Symptoms in Stroke Patients.
    International journal of molecular sciences, 2020, Jul-23, Volume: 21, Issue:15

    The study was designed to demonstrate the relationship of free fatty acids (FFAs) and eicosanoids levels with the severity of depressive symptoms in stroke. The ischemic stroke patients (

    Topics: Depression; Docosahexaenoic Acids; Fatty Acids, Nonesterified; Female; Follow-Up Studies; Humans; Lipoxins; Male; Middle Aged; Prospective Studies; Severity of Illness Index; Stroke

2020

Other Studies

5 other study(ies) available for protectin-d1 and Stroke

ArticleYear
cRel and Wnt5a/Frizzled 5 Receptor-Mediated Inflammatory Regulation Reveal Novel Neuroprotectin D1 Targets for Neuroprotection.
    Cellular and molecular neurobiology, 2023, Volume: 43, Issue:3

    Wnt5a triggers inflammatory responses and damage via NFkB/p65 in retinal pigment epithelial (RPE) cells undergoing uncompensated oxidative stress (UOS) and in experimental ischemic stroke. We found that Wnt5a-Clathrin-mediated uptake leads to NFkB/p65 activation and that Wnt5a is secreted in an exosome-independent fashion. We uncovered that docosahexaenoic acid (DHA) and its derivative, Neuroprotectin D1 (NPD1), upregulate c-Rel expression that, as a result, blunts Wnt5a abundance by competing with NFkB/p65 on the Wnt5a promoter A. Wnt5a increases in ischemic stroke penumbra and blood, while DHA reduces Wnt5a abundance with concomitant neuroprotection. Peptide inhibitor of Wnt5a binding, Box5, is also neuroprotective. DHA-decreased Wnt5a expression is concurrent with a drop in NFkB-driven inflammatory cytokine expression, revealing mechanisms after stroke, as in RPE cells exposed to UOS. Limiting the Wnt5a activity via Box5 reduces stroke size, suggesting neuroprotection pertinent to onset and progression of retinal degenerations and stroke consequences. NPD1 disrupts Wnt5a feedback loop at two sites: (1) decreasing FZD5, thus Wnt5a internalization, and (2) by enhancing cREL activity, which competes with p65/NFkB downstream endocytosis. As a result, Wnt5a expression is reduced, and so is its inflammatory signaling in RPE cells and neurons in ischemic stroke.

    Topics: Docosahexaenoic Acids; Frizzled Receptors; Humans; Ischemic Stroke; Neuroprotection; Stroke; Wnt-5a Protein

2023
NPD1 Plus RvD1 Mediated Ischemic Stroke Penumbra Protection Increases Expression of Pro-homeostatic Microglial and Astrocyte Genes.
    Cellular and molecular neurobiology, 2023, Volume: 43, Issue:7

    Neuroprotection to attenuate or block the ischemic cascade and salvage neuronal damage has been extensively explored for treating ischemic stroke. However, despite increasing knowledge of the physiologic, mechanistic, and imaging characterizations of the ischemic penumbra, no effective neuroprotective therapy has been found. This study focuses on the neuroprotective bioactivity of docosanoid mediators: Neuroprotectin D1 (NPD1), Resolvin D1 (RvD1), and their combination in experimental stroke. Molecular targets of NPD1 and RvD1 are defined by following dose-response and therapeutic window. We demonstrated that treatment with NPD1, RvD1, and combination therapy provides high-grade neurobehavioral recovery and decreases ischemic core and penumbra volumes even when administered up to 6 h after stroke. The expression of the following genes was salient: (a) Cd163, an anti-inflammatory stroke-associated gene, was the most differentially expressed gene by NPD1+RvD1, displaying more than a 123-fold upregulation in the ipsilesional penumbra (Lisi et al., Neurosci Lett 645:106-112, 2017); (b) 100-fold upregulation takes place in astrocyte gene PTX3, a key regulator of neurogenesis and angiogenesis after cerebral ischemia (. Rodriguez-Grande et al., J Neuroinflammation 12:15, 2015); and (c) Tmem119 and P2y12, two markers of homeostatic microglia, were found to be enhanced by ten- and fivefold, respectively (Walker et al. Int J Mol Sci 21:678, 2020). Overall, we uncovered that protection after middle cerebral artery occlusion (MCAo) by the lipid mediators elicits expression of microglia and astrocyte-specific genes (Tmem119, Fcrls, Osmr, Msr1, Cd68, Cd163, Amigo2, Thbs1, and Tm4sf1) likely participating in enhancing homeostatic microglia, modulating neuroinflammation, promoting DAMP clearance, activating NPC differentiation and maturation, synapse integrity and contributing to cell survival.

    Topics: Astrocytes; Brain Ischemia; Humans; Ischemic Stroke; Microglia; Stroke

2023
Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke.
    Cell death and differentiation, 2017, Volume: 24, Issue:6

    Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.

    Topics: Brain Ischemia; Cell Line; Docosahexaenoic Acids; Gene Expression Regulation; Humans; Neurons; Oxidative Stress; Signal Transduction; Stroke; Ubiquitin-Protein Ligases; Up-Regulation

2017
Docosahexaenoic acid and its derivative neuroprotectin D1 display neuroprotective properties in the retina, brain and central nervous system.
    Nestle Nutrition Institute workshop series, 2013, Volume: 77

    The significance of the selective enrichment in omega-3 essential fatty acids (docosahexaenoyl - DHA - chains of membrane phospholipids, 22C and 6 double bonds) in the nervous system (e.g. synaptic membranes and dendrites) has remained, until recently, incompletely understood. While studying mechanisms of neuronal survival, we contributed to the discovery of a docosanoid synthesized by 15-lipoxygenase-1 from DHA, which we dubbed neuroprotectin D1 (NPD1;10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic acid). NPD1 is a docosanoid because it is derived from a 22C precursor (DHA), unlike eicosanoids, which are derived from the 20C arachidonic acid family of essential fatty acids not enriched in the nervous system. We found that NPD1 is promptly made in response to oxidative stress, seizures and brain ischemia-reperfusion. NPD1 is neuroprotective in experimental brain damage, retinal pigment epithelial cells, and in human brain cells. Thus, NPD1 acts as a protective sentinel, one of the very first defenses activated when cell homeostasis is threatened by neurodegenerations. NPD1 also has been shown to have a specificity and potency that provides beneficial bioactivity during initiation and early progression of neuronal and retinal degenerations, epilepsy and stroke. In short, NPD1 regulation promotes homeostatic regulation of neural circuitry integrity.

    Topics: Animals; Brain; Brain Diseases; Brain Ischemia; Docosahexaenoic Acids; Epilepsy; Humans; Oxidative Stress; Retina; Retinal Degeneration; Stroke

2013
Docosahexaenoic acid signaling modulates cell survival in experimental ischemic stroke penumbra and initiates long-term repair in young and aged rats.
    PloS one, 2012, Volume: 7, Issue:10

    Docosahexaenoic acid, a major omega-3 essential fatty acid family member, improves behavioral deficit and reduces infarct volume and edema after experimental focal cerebral ischemia. We hypothesize that DHA elicits neuroprotection by inducing AKT/p70S6K phosphorylation, which in turn leads to cell survival and protects against ischemic stroke in young and aged rats.. Rats underwent 2 h of middle cerebral artery occlusion (MCAo). DHA, neuroprotectin D1 (NPD1) or vehicle (saline) was administered 3 h after onset of stroke. Neurological function was evaluated on days 1, 2, 3, and 7. DHA treatment improved functional recovery and reduced cortical, subcortical and total infarct volumes 7 days after stroke. DHA also reduced microglia infiltration and increased the number of astrocytes and neurons when compared to vehicle on days 1 and 7. Increases in p473 AKT and p308 AKT phosphorylation/activation were observed in animals treated with DHA 4 h after MCAo. Activation of other members of the AKT signaling pathway were also observed in DHA treated animals including increases in pS6 at 4 h and pGSK at 24 h. DHA or NPD1 remarkably reduced total and cortical infarct in aged rats. Moreover, we show that in young and aged rats DHA treatment after MCAo potentiates NPD1 biosynthesis. The phosphorylation of p308 AKT or pGSK was not different between groups in aged rats. However, pS6 expression was increased with DHA or NPD1 treatment when compared to vehicle.. We suggest that DHA induces cell survival, modulates the neuroinflammatory response and triggers long term restoration of synaptic circuits. Both DHA and NPD1 elicited remarkable protection in aged animals. Accordingly, activation of DHA signaling might provide benefits in the management of ischemic stroke both acutely as well as long term to limit ensuing disabilities.

    Topics: Animals; Behavior; Brain Ischemia; Cell Survival; Disease Models, Animal; Docosahexaenoic Acids; Gene Expression Regulation; Humans; Infarction, Middle Cerebral Artery; Male; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Recovery of Function; Signal Transduction; Stroke

2012