protectin-d1 and Reperfusion-Injury

protectin-d1 has been researched along with Reperfusion-Injury* in 8 studies

Reviews

5 review(s) available for protectin-d1 and Reperfusion-Injury

ArticleYear
Docosahexaenoic acid (DHA), a fundamental fatty acid for the brain: New dietary sources.
    Prostaglandins, leukotrienes, and essential fatty acids, 2017, Volume: 124

    Docosahexaenoic acid (C22: 6n-3, DHA) is a long-chain polyunsaturated fatty acid of marine origin fundamental for the formation and function of the nervous system, particularly the brain and the retina of humans. It has been proposed a remarkable role of DHA during human evolution, mainly on the growth and development of the brain. Currently, DHA is considered a critical nutrient during pregnancy and breastfeeding due their active participation in the development of the nervous system in early life. DHA and specifically one of its derivatives known as neuroprotectin D-1 (NPD-1), has neuroprotective properties against brain aging, neurodegenerative diseases and injury caused after brain ischemia-reperfusion episodes. This paper discusses the importance of DHA in the human brain given its relevance in the development of the tissue and as neuroprotective agent. It is also included a critical view about the ways to supply this noble fatty acid to the population.

    Topics: Brain; Breast Feeding; Docosahexaenoic Acids; Fatty Acids; Female; Humans; Neurodegenerative Diseases; Pregnancy; Reperfusion Injury

2017
Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease.
    Molecular neurobiology, 2010, Volume: 41, Issue:2-3

    The significance of the selective enrichment in omega-3 essential fatty acids in photoreceptors and synaptic membranes of the nervous system has remained, until recently, incompletely understood. While studying mechanisms of cell survival in neural degeneration, we discovered a docosanoid synthesized from unesterified docosahexaenoic acid (DHA) by a 15-lipoxygenase (15-LOX), which we called neuroprotectin D1 (NPD1; 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15E,19Z hexaenoic acid). This lipid mediator is a docosanoid because it is derived from the 22 carbon (22C) precursor DHA, unlike eicosanoids, which are derived from the 20 carbon (20C) arachidonic acid (AA) family member of essential fatty acids. We discovered that NPD1 is promptly made in response to oxidative stress, as a response to brain ischemia-reperfusion, and in the presence of neurotrophins. NPD1 is neuroprotective in experimental brain damage, in oxidative-stressed retinal pigment epithelial (RPE) cells, and in human brain cells exposed to amyloid-beta (Abeta) peptides. We thus envision NPD1 as a protective sentinel, one of the very first defenses activated when cell homeostasis is threatened by imbalances in normal neural function. We provide here, in three sections, recent experimental examples that highlight the specificity and potency of NPD1 spanning beneficial bioactivity during initiation and early progression of neurodegeneration: (1) during retinal signal phototransduction, (2) during brain ischemia-reperfusion, and (3) in Alzheimer's disease (AD) and stressed human brain cell models of AD. From this experimental evidence, we conclude that DHA-derived NPD1 regulation targets upstream events of brain cell apoptosis, as well as neuro-inflammatory signaling, promoting and maintaining cellular homeostasis, and restoring neural and retinal cell integrity.

    Topics: Aging; Animals; Dietary Fats; Disease Progression; Docosahexaenoic Acids; Fatty Acids, Omega-3; Humans; Hypoxia-Ischemia, Brain; Light Signal Transduction; Neurodegenerative Diseases; Neuroprotective Agents; Reperfusion Injury

2010
Omega-3 fatty acid docosahexaenoic acid is the precursor of neuroprotectin D1 in the nervous system.
    World review of nutrition and dietetics, 2009, Volume: 99

    Topics: Brain; Diet; Docosahexaenoic Acids; Epilepsy; Humans; Neurodegenerative Diseases; Neuronal Plasticity; Neuroprotective Agents; Reperfusion Injury; Retina

2009
Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection.
    Current opinion in clinical nutrition and metabolic care, 2007, Volume: 10, Issue:2

    To summarize recent findings that docosahexaenoate (DHA) is the precursor of stereospecific derivatives with anti-inflammatory and cytoprotective properties.. The docosahexaenoate-derived mediator neuroprotectin D1 is formed in retinal pigment epithelial cells when confronted with oxidative stress, in the brain during experimental stroke, and in the human brain from Alzheimer's disease patients as well as in human brain cells in culture. Neuroprotectin D1 displays potent anti-inflammatory and neuroprotective bioactivity.. Here, we summarize recent studies demonstrating that in brain ischemia-reperfusion and in retinal pigment epithelial cells exposed to oxidative stress stereospecific docosahexaenoate-oxygenation pathways are activated and lead to the formation of docosanoid messengers. Two docosahexaenoate-oxygenation pathways were identified: the first is responsible for the formation of the messenger neuroprotectin D1 and the second pathway, which is active in the presence of aspirin, leads to the formation of the resolvin-type mediators (17R-DHA). Neuroprotectin D1 induces antiapoptotic, anti-inflammatory signaling and is neuroprotective.

    Topics: Brain; Docosahexaenoic Acids; Humans; Neuroprotective Agents; Oxidative Stress; Reperfusion Injury; Retina; Signal Transduction

2007
Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress.
    Brain pathology (Zurich, Switzerland), 2005, Volume: 15, Issue:2

    The biosynthesis of oxygenated arachidonic acid messengers triggered by cerebral ischemia-reperfusion is preceded by an early and rapid phospholipase A2 activation reflected in free arachidonic and docosahexaenoic acid (DHA) accumulation. These fatty acids are released from membrane phospholipids. Both fatty acids are derived from dietary essential fatty acids; however, only DHA, the omega-3 polyunsaturated fatty acyl chain, is concentrated in phospholipids of various cells of brain and retina. Synaptic membranes and photoreceptors share the highest content of DHA of all cell membranes. DHA is involved in memory formation, excitable membrane function, photoreceptor cell biogenesis and function, and neuronal signaling, and has been implicated in neuroprotection. In addition, this fatty acid is required for retinal pigment epithelium cell (RPE) functional integrity. Here we provide an overview of the recent elucidation of a specific mediator generated from DHA that contributes at least in part to its biological significance. In oxidative stress-challenged human RPE cells and rat brain undergoing ischemia-reperfusion, 10,17S-docosatriene (neuroprotectin D1, NPD1) synthesis evolves. In addition, calcium ionophore A23187, IL-1beta, or the supply of DHA enhances NPD1 synthesis. A time-dependent release of endogenous free DHA followed by NPD1 formation occurs, suggesting that a phospholipase A2 releases the mediator's precursor. When NPD1 is infused during ischemia-reperfusion or added to RPE cells during oxidative stress, apoptotic DNA damage is down-regulated. NPD1 also up-regulates the anti-apoptotic Bcl-2 proteins Bcl-2 and BclxL and decreases pro-apoptotic Bax and Bad expression. Moreover, NPD1 inhibits oxidative stress-induced caspase-3 activation. NPD1 also inhibits IL-1beta-stimulated expression of COX-2. Overall, NPD1 protects cells from oxidative stress-induced apoptosis. Because photoreceptors are progressively impaired after RPE cell damage in retinal degenerative diseases, understanding of how these signals contribute to retinal cell survival may lead to the development of new therapeutic strategies. Moreover, NPD1 bioactivity demonstrates that DHA is not only a target of lipid peroxidation, but rather is the precursor to a neuroprotective signaling response to ischemia-reperfusion, thus opening newer avenues of therapeutic exploration in stroke, neurotrauma, spinal cord injury, and neurodegenerative diseases, such as Alzheimer disease, aiming to up

    Topics: Animals; Brain; Docosahexaenoic Acids; Humans; Neuroprotective Agents; Oxidative Stress; Rats; Reperfusion Injury; Retina; Signal Transduction

2005

Other Studies

3 other study(ies) available for protectin-d1 and Reperfusion-Injury

ArticleYear
NPD1 rapidly targets mitochondria-mediated apoptosis after acute injection protecting brain against ischemic injury.
    Experimental neurology, 2021, Volume: 335

    Mitochondria-related cell death pathways play a major role in ischemic brain injury. Thus, mitochondrial "protective" molecules could be considered for new therapeutic regimens. We recently reported that acute administration of docosahexaenoic acid (DHA) triglyceride lipid emulsion, immediately after hypoxic-ischemic (HI) insult, markedly attenuated brain infarct size. This was associated with an early change of DHA-derived specialized pro-resolving mediator (SPM) profiles. Specifically, DHA treatment induced a 50% increase of neuroprotectin D1 (NPD1) levels in ischemic brain. Based on these findings, we questioned if direct administration of NPD1 after HI injury also affords neuroprotection, and if so, by what mechanisms. Using HI insult to mimic ischemic stroke in neonatal mice, we observed that acute intraperitoneal injection of NPD1 immediately after HI injury prevented the expansion of the ischemic core by ~40% and improved coordination and motor abilities compared to the control group. At 7 days after HI injury, NPD1 treatment decreased ipsilateral hemisphere atrophy and preserved motor functions in wire-holding and bridge-crossing tests compared to control littermates. Brain mitochondria, isolated at 4 h after reperfusion from mice treated with NPD1, showed an increase in the capacity to buffer calcium after HI injury, as result of the preservation of mitochondrial membranes. Further, NPD1 induced a reduction of mitochondrial BAX translocation and oligomerization, attenuated cytochrome C release and decreased AIF nuclear translocation. To confirm whether NPD1 acts as BAX inhibitor, we evaluated NPD1 action co-administrated with a pro-apoptotic agent, staurosporine, using mouse embryonic fibroblasts as in vitro model of apoptosis. NPD1 exposure markedly decreased mitochondria-mediated apoptosis, blocking BAX translocation from cytosol to mitochondria and subsequently reducing caspase-3 activation. Our findings provide novel evidence that the neuroprotective action of NPD1 is elicited rapidly in the first few hours after ischemic injury and is associated with both preserved mitochondrial membrane structure and reduced BAX mitochondrial translocation and activation.

    Topics: Animals; Animals, Newborn; Apoptosis; Atrophy; bcl-2-Associated X Protein; Brain; Brain Infarction; Brain Ischemia; Docosahexaenoic Acids; Ischemic Stroke; Male; Mice; Mice, Inbred C57BL; Mitochondria; Neuroprotective Agents; Psychomotor Performance; Reperfusion Injury

2021
Neuroprotectin D1 attenuates brain damage induced by transient middle cerebral artery occlusion in rats through TRPC6/CREB pathways.
    Molecular medicine reports, 2013, Volume: 8, Issue:2

    Neuroprotectin D1 (NPD1) may serve an endogenous neuroprotective role in brain ischemic injury, yet the underlying mechanism involved is poorly understood. In the present study, we aimed to investigate whether intracerebroventricular (ICV) injection of NPD1 is neuroprotective against transient focal cerebral ischemia. We also sought to verify the neuroprotective mechanisms of NPD1. Rats subjected to 2 h ischemia followed by reperfusion were treated with NPD1 at 2 h after reperfusion. PD98059 was administered 20 min prior to surgery. Western blot analysis was performed to detect the protein levels of calpain-specific aII-spectrin breakdown products of 145 kDa (SBDP145), transient receptor potential canonical (subtype) 6 (TRPC6) and phosphorylation of cAMP/Ca2+-response element binding protein (p-CREB) at 12, 24 and 48 h after reperfusion. The immunoreactivity of p-CREB and TRPC6 was measured by quantum dot‑based immunofluorescence analysis. Infarct volume and neurological scoring were evaluated at 48 h after reperfusion. NPD1, when applied at 2 h after reperfusion, significantly reduced infarct volumes and increased neurological scores at 48 h after reperfusion, accompanied by elevated TRPC6 and p-CREB activity, and decreased SBDP145 activity. When mitogen‑activated protein kinase kinase (MEK) activity was specifically inhibited, the neuroprotective effect of NPD1 was attenuated and correlated with decreased CREB activity. Our results clearly showed that ICV injection of NPD1 at 2 h after reperfusion improves the neurological status of middle cerebral artery occlusion (MCAO) rats through the inhibition of calpain‑mediated TRPC6 proteolysis and the subsequent activation of CREB via the Ras/MEK/ERK pathway.

    Topics: Animals; Brain Ischemia; Calpain; Cyclic AMP Response Element-Binding Protein; Docosahexaenoic Acids; Infarction, Middle Cerebral Artery; Male; Neuroprotective Agents; Phosphorylation; Proteolysis; Rats; Reperfusion Injury; Signal Transduction; Time Factors; TRPC Cation Channels

2013
Resolvin D series and protectin D1 mitigate acute kidney injury.
    Journal of immunology (Baltimore, Md. : 1950), 2006, Nov-01, Volume: 177, Issue:9

    Omega-3 fatty acid docosahexaenoic acid is converted to potent resolvins (Rv) and protectin D1 (PD1), two newly identified families of natural mediators of resolution of inflammation. We report that, in response to bilateral ischemia/reperfusion injury, mouse kidneys produce D series resolvins (RvDs) and PD1. Administration of RvDs or PD1 to mice before the ischemia resulted in a reduction in functional and morphological kidney injury. Initiation of RvDs and RvD1 administration 10 min after reperfusion also resulted in protection of the kidney as measured by serum creatinine 24 and 48 h later. Interstitial fibrosis after ischemia/reperfusion was reduced in mice treated with RvDs. Both RvDs and PD1 reduced the number of infiltrating leukocytes and blocked TLR-mediated activation of macrophages. Thus, the renal production of Rv and protectins, a previously unrecognized endogenous anti-inflammatory response, may play an important role in protection against and resolution of acute kidney injury. These data may also have therapeutic implications for potentiation of recovery from acute kidney injury.

    Topics: Acute Disease; Animals; Docosahexaenoic Acids; Fatty Acids, Omega-3; Kidney Diseases; Leukocytes; Male; Mice; Reperfusion Injury

2006