prostaglandin-h2 and Inflammation

prostaglandin-h2 has been researched along with Inflammation* in 5 studies

Reviews

1 review(s) available for prostaglandin-h2 and Inflammation

ArticleYear
[Direction of strategic use: a new classification of non-steroidal anti-inflammatory drugs based on reactivity with peroxidase].
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 2013, Volume: 133, Issue:6

      The pharmaceutical effects of non-steroidal anti-inflammatory drugs (NSAIDs) occur through the inhibition of prostaglandin H synthase (PGHS). Prostaglandin H2 is produced from arachidonic acid via peroxidase and cyclooxygenase cycles in PGHS. NSAIDs exhibit different levels of reactivity in these reaction cycles. To prevent the development of side effect while maintaining the beneficial effects of drugs, a therapeutic strategy should be used. A new classification of NSAIDs has been proposed based on reactivity to peroxidase. Class 1 includes the majority of NSAIDs, which react with horseradish peroxidase (HRP) compounds I and II. Also, their drugs exhibit spectral changes induced by PGHS peroxidase and diminished ESR signals of the tyrosyl radical of metmyoglobin. They reduce compounds I and II of HRP and scavenge tyrosyl radicals. The branched chain mechanism by which the porphyrin radical is transferred to the tyrosine residue of the protein might be blocked by these NSAIDs. Class 2 includes salicylic acid derivatives that react only with the porphyrin radical and do not react with HRP compound II (oxoferryl species). Class 3 includes aspirin, nimesulide, tolmetin, and arylpropionic acid derivatives, including ibuprofen and the coxibs such as celecoxib and rofecoxib, which are not substrates for HRP or PGHS peroxidase. It seems that the selectivity of NSAIDs to PGHS1 and PGHS2 depends on their reactivity with cyclooxygenase rather than with the peroxidase of PGHS. The best drug for each inflammatory disease should therefore be selected for therapy.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase Inhibitors; Humans; Inflammation; Peroxidase; Prostaglandin H2; Prostaglandin-Endoperoxide Synthases

2013

Other Studies

4 other study(ies) available for prostaglandin-h2 and Inflammation

ArticleYear
Identification of the two-phase mechanism of arachidonic acid regulating inflammatory prostaglandin E2 biosynthesis by targeting COX-2 and mPGES-1.
    Archives of biochemistry and biophysics, 2016, 08-01, Volume: 603

    Through linking inducible cyclooxygenase (COX)-2 with microsomal prostaglandin E2 (PGE2) synthase-1 (mPGES-1), a Single-Chain Enzyme Complex (SCEC, COX-2-10aa-mPGES-1) was engineered to mimic a specific inflammatory PGE2 biosynthesis from omega-6 fatty acid, arachidonic acid (AA), by eliminating involvements of non-inducible COX-1 and other PGE2 synthases. Using the SCEC, we characterized coupling reactions between COX-2 and mPGES-1 at 1:1 ratio of inflammatory PGE2 production. AA demonstrated two phase activities to regulate inflammatory PGE2 production. In the first phase (<2 μM), AA was a COX-2 substrate and converted to increasing production of PGE2. In the second phase with a further increased AA level (2-10 μM), AA bound to mPGES-1 and inhibited the PGE2 production. The SCEC study was identical to the co-expression of COX-2 and mPGES-1. This was further confirmed by using mPGES-1 and PGH2 as a direct enzyme target and substrate, respectively. Furthermore, the carboxylic acid group of AA binding to R67 and R70 of mPGES-1 was identified by X-ray structure-based docking and mutagenesis. mPGES-1 mutants, R70A, R70K, R67A and R67K, lost 40-100% binding to [(14)C]-AA. To conclude, a cellular model, in which AA is involved in self-controlling initial initiating and later resolving inflammation by its two phase activities, was discussed.

    Topics: Anti-Inflammatory Agents, Non-Steroidal; Arachidonic Acid; Catalytic Domain; Crystallography, X-Ray; Cyclooxygenase 2; Dinoprostone; Dose-Response Relationship, Drug; Endoplasmic Reticulum; HEK293 Cells; Humans; Inflammation; Mutagenesis, Site-Directed; Prostaglandin H2; Prostaglandin-E Synthases; Protein Binding; Recombinant Proteins

2016
HTRF-based assay for microsomal prostaglandin E2 synthase-1 activity.
    Journal of biomolecular screening, 2008, Volume: 13, Issue:7

    Microsomal prostaglandin E2 synthase-1 (mPGES-1) catalyzes the formation of prostaglandin E2 (PGE2) from the endoperoxide prostaglandin H2 (PGH2). Expression of this enzyme is induced during the inflammatory response, and mouse knockout experiments suggest it may be an attractive target for antiarthritic therapies. Assaying the activity of this enzyme in vitro is challenging because of the unstable nature of the PGH2 substrate. Here, the authors present an mPGES-1 activity assay suitable for characterization of enzyme preparations and for determining the potency of inhibitor compounds. This plate-based competition assay uses homogenous time-resolved fluorescence to measure PGE2 produced by the enzyme. The assay is insensitive to DMSO concentration up to 10% and does not require extensive washes after the initial enzyme reaction is concluded, making it a simple and convenient way to assess mPGES-1 inhibition.

    Topics: Animals; Arthritis; Baculoviridae; Binding, Competitive; Gene Expression Regulation, Enzymologic; Humans; Inflammation; Inhibitory Concentration 50; Insecta; Intramolecular Oxidoreductases; Microsomes; Peroxides; Prostaglandin H2; Prostaglandin-E Synthases; Spectrometry, Fluorescence; Time Factors

2008
Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances.
    Proceedings of the National Academy of Sciences of the United States of America, 2000, May-23, Volume: 97, Issue:11

    Capsaicin, a pungent ingredient of hot peppers, causes excitation of small sensory neurons, and thereby produces severe pain. A nonselective cation channel activated by capsaicin has been identified in sensory neurons and a cDNA encoding the channel has been cloned recently. However, an endogenous activator of the receptor has not yet been found. In this study, we show that several products of lipoxygenases directly activate the capsaicin-activated channel in isolated membrane patches of sensory neurons. Among them, 12- and 15-(S)-hydroperoxyeicosatetraenoic acids, 5- and 15-(S)-hydroxyeicosatetraenoic acids, and leukotriene B(4) possessed the highest potency. The eicosanoids also activated the cloned capsaicin receptor (VR1) expressed in HEK cells. Prostaglandins and unsaturated fatty acids failed to activate the channel. These results suggest a novel signaling mechanism underlying the pain sensory transduction.

    Topics: Animals; Capsaicin; Cell Line; Cells, Cultured; Dinoprostone; Eicosanoids; Ganglia, Spinal; Humans; Hydroxyeicosatetraenoic Acids; Inflammation; Ion Channel Gating; Leukotriene B4; Leukotrienes; Ligands; Lipid Peroxides; Lipoxygenase; Molecular Structure; Neurons, Afferent; Prostaglandin D2; Prostaglandin H2; Prostaglandins H; Rats; Receptors, Drug; Structure-Activity Relationship

2000
[(1H-imidazol-1-yl)methyl]- and [(3-pyridinyl)methyl]pyrroles as thromboxane synthetase inhibitors.
    Journal of medicinal chemistry, 1989, Volume: 32, Issue:4

    Several [(1H-imidazol-1-yl)methyl]- and [(3-pyridinyl)methyl] pyrroles were prepared and evaluated in vitro as thromboxane synthetase inhibitors in human platelet aggregation studies. A number of structures, e.g. 10b,f,g,i (respective IC50 values: 1 microM, 50 nM, 42 nM, 44 nM) showed superior in vitro inhibition of TXA2 synthetase when compared to the standard dazoxiben (1). However, it was found that in vitro potency did not translate into nor correlate with in vivo activity when these compounds were evaluated in mice in a collagen-epinephrine-induced pulmonary thromboembolism model. (E)-1-Methyl-2-[(1H-imidazol-1-yl)methyl]-5-(2-carboxyprop-1-enyl) pyrrole (10b) was found to offer protection against collagen-epinephrine-induced mortality in mice, thereby demonstrating that oral administration is an effective route for absorption of this drug. Additional evidence for the oral effectiveness of 10b in lowering serum TXB2 levels was obtained by performing ex vivo radioimmunoassay experiments with rats. A 13-week study of 10b in rats with reduced renal mass was conducted in order to evaluate the role of TXA2 production in hypertension and renal dysfunction. Although serum and urinary TXB2 levels in rats were found to be lowered during this study by 10b, the levels of urinary protein excretion remained comparable to that of the control group.

    Topics: Animals; Aorta; Biological Availability; Blood Platelets; Chemical Phenomena; Chemistry; Humans; Imidazoles; Inflammation; Kidney Diseases; Male; Mice; Microsomes; Platelet Aggregation Inhibitors; Prostaglandin Endoperoxides, Synthetic; Prostaglandin H2; Prostaglandins H; Pyridines; Pyrroles; Rats; Structure-Activity Relationship; Swine; Thromboxane A2; Thromboxane B2; Thromboxane-A Synthase

1989