prostaglandin-h2 and Disease-Models--Animal

prostaglandin-h2 has been researched along with Disease-Models--Animal* in 5 studies

Other Studies

5 other study(ies) available for prostaglandin-h2 and Disease-Models--Animal

ArticleYear
Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model.
    Prostaglandins, leukotrienes, and essential fatty acids, 2014, Volume: 91, Issue:5

    Previously, we have demonstrated that prostamide/PGF synthase, which catalyzes the reduction of prostaglandin (PG) H2 to PGF2α, is constitutively expressed in myelin sheaths and cultured oligodendrocytes, suggesting that PGF2α has functional significance in myelin-forming oligodendrocytes. To investigate the effects of PGF2α/FP receptor signaling on demyelination, we administrated FP receptor agonist and antagonist to cuprizone-exposed mice, a model of multiple sclerosis. Mice were fed a diet containing 0.2% cuprizone for 5 weeks, which induces severe demyelination, glial activation, proinflammatory cytokine expression, and motor dysfunction. Administration of the FP receptor antagonist AL-8810 attenuated cuprizone-induced demyelination, glial activation, and TNFα expression in the corpus callosum, and also improved the motor function. These data suggest that during cuprizone-induced demyelination, PGF2α/FP receptor signaling contributes to glial activation, neuroinflammation, and demyelination, resulting in motor dysfunction. Thus, FP receptor inhibition may be a useful symptomatic treatment in multiple sclerosis.

    Topics: Animals; Corpus Callosum; Cuprizone; Demyelinating Diseases; Dinoprost; Disease Models, Animal; Humans; Mice; Motor Activity; Multiple Sclerosis; Myelin Sheath; Oligodendroglia; Prostaglandin H2; Receptors, Prostaglandin; Tumor Necrosis Factor-alpha

2014
Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle.
    Hypertension (Dallas, Tex. : 1979), 2000, Volume: 36, Issue:5

    The myogenic response of skeletal muscle arterioles is enhanced in hypertension because of the release of endothelin (ET) and prostaglandin H(2) (PGH(2))/thromboxane A(2) (TxA(2)) from the endothelium. We hypothesized that ET and PGH(2)/TxA(2) modulate Ca(2+) signaling in arteriolar smooth muscle and thereby enhance myogenic constriction. Thus, simultaneous changes in intracellular Ca(2+) concentration in smooth muscle ([Ca(2+)](i)), measured by fura 2 microfluorometry (expressed as Ca(2+) fluorescence ratio [R(Ca)]), and diameter were obtained as a function of intraluminal pressure (P(i)) in isolated cannulated gracilis muscle arterioles (diameter approximately 120 micrometer) of normotensive Wistar rats (WR) and spontaneously hypertensive rats (SHR). In the absence of extracellular Ca(2+), increases in P(i) from 20 to 160 mm Hg increased the passive diameter of arterioles without changes in R(Ca). In the presence of extracellular Ca(2+) and endothelium, increases in P(i) elicited similar increases in R(Ca) (30+/-7% for control and 33+/-8% for SHR at 160 mm Hg) but a significantly (P<0.05) greater constriction of SHR arterioles compared with WR arterioles (at 160 mm Hg, 55+/-4% versus 38+/-2%, respectively, of passive diameter). In the absence of the endothelium, P(i)-induced changes in the R(Ca) and diameter of SHR and WR arterioles did not differ significantly. Also, a step increase in P(i) (from 80 to 140 mm Hg) elicited a similar increase in R(Ca) but greater constrictions in SHR versus WR arterioles. In the presence of the TxA(2) receptor inhibitor SQ29,548 and the ET(A) receptor inhibitor BQ123, there was no difference between responses of SHR and WR arterioles. In WR arterioles, increasing concentrations of KCl elicited a significant increase in R(Ca) (38+/-7% at 80 mmol/L) and completely constricted the arterioles. In contrast, constrictions to ET (52+/-7% at 3x10(-12) mol/L) and the TxA(2) agonist U46619 (40+/-8% at 3x10(-9) mol/L) were not accompanied by increases in R(Ca) at submaximal concentrations. Collectively, these findings suggest that in hypertension, endothelium-derived ET and PGH(2)/TxA(2) increase the Ca(2+) sensitivity of the contractile apparatus of arteriolar smooth muscle; thus, the similar increases in [Ca(2+)](i) in response to the elevation of intraluminal pressure elicit greater myogenic constriction.

    Topics: Animals; Arterioles; Calcium; Constriction, Pathologic; Cytophotometry; Disease Models, Animal; Endothelins; Endothelium; Hypertension; Microscopy, Video; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandin H2; Prostaglandins H; Rats; Rats, Inbred SHR; Rats, Wistar; Thromboxane A2; Vascular Resistance

2000
Relationship between hypercholesterolaemia, endothelial dysfunction and hypertension.
    Journal of hypertension, 1999, Volume: 17, Issue:5

    We have previously shown that in the rat a diet high in cholesterol and deficient in vitamin E and selenium results in hypercholesterolaemia and increased lipid oxidation. We utilized this model to determine whether rats given this diet develop impaired endothelium-dependent relaxation mediated by nitric oxide (NO) in mesenteric and in renal vessels. In addition, we tested whether the impairment is due to (i) decreased endothelial NO synthase activity, (ii) increased NO inactivation and/or (iii) increased production of the endothelium-derived constricting factors thromboxane A2/prostaglandin H2 and endothelin-1. We also investigated whether endothelial dysfunction induced by dyslipidaemia increases the sensitivity for the development of hypertension in response to high dietary salt.. Male Dahl salt-sensitive (DSS) rats were divided into three groups and received a standard diet (control group), a high (4%) cholesterol diet (HChol), or a high cholesterol diet deficient in the anti-oxidants vitamin E and selenium (HChol-Def). The NaCl content of these diets was 0.5%. After 18 weeks we studied endothelium-dependent relaxation in response to acetylcholine (ACh) in aortas and in isolated perfused preparations of mesenteric arteries and kidneys. In some experiments, ifetroban, a thromboxane A2/prostaglandin H2 receptor antagonist, was added to the organ bath or the perfusion buffer. Vascular responses to endothelin-1 as well as to BQ-123, an endothelin A receptor blocker, were studied in the isolated perfused kidneys. In addition, two extra groups of rats were fed a diet high in sodium chloride (2%): one of the groups received the normal cholesterol diet whereas the other group received the diet high in cholesterol and deficient in vitamin E and selenium.. Compared to normocholesterolemic rats, responses to ACh were significantly impaired in aortas, mesenteric arteries and kidneys of HChol-Def rats (P < 0.01). Endothelial NO synthase activity (conversion of [14C]L-arginine to [14C]L-citrulline) was similar in aortas of control, HChol and HChol-Def rats; thus suggesting that impaired endothelium-dependent relaxation in the HChol-Def rats was not due to decreased cNOS catalytic activity. Ifetroban improved the impaired endothelium-dependent relaxation in mesenteric vessels, but not in aortas and kidneys. Endothelin-1 (ET-1: 10(-13)-10(-11) mol/l) elicited NO-mediated relaxations in kidneys of control rats but not in kidneys of HChol-Def; blockade of ET-1 with BQ-123, an ET(A) receptor blocker, did not improve NO-mediated relaxation of HChol-Def. Despite impaired endothelium-dependent relaxation in renal and mesenteric vessels, HChol-Def DSS rats failed to develop hypertension (systolic blood pressure 144 +/- 1 in control and 150 +/- 2 mmHg in HChol-Def) but manifested a significant increase in sensitivity to the pressor effects of a high (2% NaCl) dietary salt content during the initial 10 weeks of the study, although the final blood pressure at 18 weeks was similar in both groups.. These studies support the notion that (i) products of lipid oxidation may reduce NO bioactivity without affecting endothelial NO synthase mass or catalytic activity, (ii) the mechanisms involved in the endothelial dysfunction induced by hypercholesterolaemia and oxidized lipids may differ among vascular beds, and (iii) decreased NO bioavailability does not necessarily result in systemic hypertension, but it may enhance the sensitivity to the hypertensinogenic effect of dietary salt.

    Topics: Acetylcholine; Animals; Aorta; Blood Pressure; Body Weight; Diet; Disease Models, Animal; Endothelin-1; Endothelins; Endothelium, Vascular; Hypercholesterolemia; Hypertension; Kidney; Male; Mesenteric Arteries; Nitric Oxide; Nitric Oxide Synthase; Perfusion; Prostaglandin H2; Prostaglandins H; Rats; Thromboxane A2

1999
15-Hydroxyeicosatetraenoic acid and diabetic endothelial dysfunction in rabbit aorta.
    Journal of cardiovascular pharmacology, 1995, Volume: 25, Issue:5

    We examined the effects of diabetes on eicosanoid metabolism and endothelium-dependent relaxation in isolated aorta from alloxan-induced diabetic rabbits and that from normal rabbits incubated in increased concentrations (44 mM) of glucose in vitro for 6 h. Immunoreactive 15-hydroxyeicosatetraenoic acid (HETE) was assayed in the incubation media of isolated aortic segments. Basal and acetylcholine (ACh)-stimulated release of 15-HETE was significantly greater in aorta of diabetic animals as compared with those of normal rabbits. Incubation of aortic segments from normal rabbits in increased concentrations of glucose caused a significant increase in basal and ACh-stimulated release of 15-HETE; and the release was significantly greater in aortic segments with endothelium than in segments without endothelium. Basal and ACh-stimulated release of 15-HETE was inhibited by indomethacin, a cyclooxygenase inhibitor. 15-HETE caused contractions of aortic rings that were inhibited by the prostaglandin H2 (PGH2) thromboxane A2 (TXA2) receptor blocker SQ-29548, but not by the TXA2 synthase inhibitor carbethoxyhexyl imidazole or indomethacin. Treatment of aortic rings with subthreshold concentrations of 15-HETE impaired ACh-induced relaxation; this was prevented by treatment with SQ-29548. Thus, abnormal release of endothelium-derived 15-HETE may play a role in endothelial cell dysfunction and increased vasoconstriction in diabetes by a mechanism that involves interaction with PGH2/TXA2 receptors.

    Topics: Acetylcholine; Animals; Aorta, Abdominal; Bridged Bicyclo Compounds, Heterocyclic; Cytochrome P-450 Enzyme Inhibitors; Diabetes Mellitus, Experimental; Disease Models, Animal; Endothelium, Vascular; Fatty Acids, Unsaturated; Glucose; Hydrazines; Hydroxyeicosatetraenoic Acids; Imidazoles; Indomethacin; Male; Muscle Contraction; Muscle, Smooth, Vascular; Proadifen; Prostaglandin H2; Prostaglandins H; Rabbits; Radioimmunoassay; Superoxide Dismutase; Thromboxane A2

1995
A comparative evaluation of thromboxane receptor blockade, thromboxane synthase inhibition and both in animal models of arterial thrombosis.
    The Journal of pharmacology and experimental therapeutics, 1994, Volume: 269, Issue:1

    The combination of thromboxane (TX) synthase inhibition and prostaglandin (PG) H2/TXA2 receptor antagonism yields enhanced antithrombotic effects as compared with either intervention alone. However, it is not known whether the enhancing effect of TX synthase inhibition is expressed also in the presence of complete blockade of PGH2/TXA2 receptors. Thus we evaluated the antithrombotic effects of increasing doses of the PGH2/TXA2 receptor antagonist L 670596 alone and in combination with a dose of the TX synthase inhibitor FCE 22178 causing > 95% inhibition of platelet TXB2 production. In the dog model of electrically induced coronary thrombosis, occlusion time in control animals (n = 14) averaged 72 +/- 29 min. L 670596 alone dose-dependently antagonized platelet PGH2/TXA2 receptors and prolonged occlusion time. The addition of FCE 22178 displaced the dose-occlusion time relation of L 670596 in a parallel fashion without modifying receptor occupancy. In the rabbit model of copper coil-induced carotid artery thrombosis, occlusion was very rapid (14 +/- 4 min) in control animals (n = 17) and was not modified by either aspirin or FCE 22178. L 670596 caused a dose-related receptor blockade and prolongation of occlusion time. The association with FCE 22178 enhanced significantly the antithrombotic effect of L 670596 at all doses. We conclude that the full therapeutic potential of PGH2/TXA2 receptor antagonism is expressed at > 90% platelet receptor occupancy. The additive effect of TX synthase inhibition suggests that conversion of PGH2 to platelet-inhibitor and vasodilator prostaglandins might be of therapeutic importance, irrespective of the extent of PGH2/TXA2 receptor blockade.

    Topics: Animals; Carbazoles; Carotid Artery Thrombosis; Copper; Coronary Thrombosis; Disease Models, Animal; Dogs; Evaluation Studies as Topic; Imidazoles; Male; Naphthalenes; Platelet Aggregation; Prostaglandin H2; Prostaglandins H; Rabbits; Receptors, Prostaglandin; Receptors, Thromboxane; Receptors, Thromboxane A2, Prostaglandin H2; Thromboxane B2; Thromboxane-A Synthase; Thromboxanes

1994