prostaglandin-h2 and Constriction--Pathologic

prostaglandin-h2 has been researched along with Constriction--Pathologic* in 2 studies

Other Studies

2 other study(ies) available for prostaglandin-h2 and Constriction--Pathologic

ArticleYear
Microsomal prostaglandin e2 synthase-1 modulates the response to vascular injury.
    Circulation, 2011, Feb-15, Volume: 123, Issue:6

    Microsomal (m) prostaglandin (PG) E₂ synthase (S)-1 catalyzes the formation of PGE₂ from PGH₂, a cyclooxygenase product that is derived from arachidonic acid. Previous studies in mice suggest that targeting mPGES-1 may be less likely to cause hypertension or thrombosis than cyclooxygenase-2-selective inhibition or deletion in vivo. Indeed, deletion of mPGES-1 retards atherogenesis and angiotensin II-induced aortic aneurysm formation. The role of mPGES-1 in the response to vascular injury is unknown.. Mice were subjected to wire injury of the femoral artery. Both neointimal area and vascular stenosis were significantly reduced 4 weeks after injury in mPGES-1 knockout mice compared with wild-type controls (65.6 ± 5.7 versus 37.7 ± 5.1 × 10³ pixel area and 70.5 ± 13.4% versus 47.7 ± 17.4%, respectively; P < 0.01). Induction of tenascin-C, a proproliferative and promigratory extracellular matrix protein, after injury was attenuated in the knockouts. Consistent with in vivo rediversion of PG biosynthesis, mPGES-1-deleted vascular smooth muscle cells generated less PGE₂ but more PGI₂ and expressed reduced tenascin-C compared with wild-type cells. Both suppression of PGE₂ and augmentation of PGI₂ attenuate tenascin-C expression and vascular smooth muscle cell proliferation and migration in vitro.. Deletion of mPGES-1 in mice attenuates neointimal hyperplasia after vascular injury, in part by regulating tenascin-C expression. This raises for consideration the therapeutic potential of mPGES-1 inhibitors as adjuvant therapy for percutaneous coronary intervention.

    Topics: Animals; Cell Movement; Cell Proliferation; Constriction, Pathologic; Dinoprostone; Epoprostenol; Femoral Artery; Intramolecular Oxidoreductases; Mice; Mice, Inbred C57BL; Mice, Knockout; Microsomes; Muscle, Smooth, Vascular; Prostaglandin H2; Prostaglandin-E Synthases; Tenascin; Tunica Intima

2011
Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle.
    Hypertension (Dallas, Tex. : 1979), 2000, Volume: 36, Issue:5

    The myogenic response of skeletal muscle arterioles is enhanced in hypertension because of the release of endothelin (ET) and prostaglandin H(2) (PGH(2))/thromboxane A(2) (TxA(2)) from the endothelium. We hypothesized that ET and PGH(2)/TxA(2) modulate Ca(2+) signaling in arteriolar smooth muscle and thereby enhance myogenic constriction. Thus, simultaneous changes in intracellular Ca(2+) concentration in smooth muscle ([Ca(2+)](i)), measured by fura 2 microfluorometry (expressed as Ca(2+) fluorescence ratio [R(Ca)]), and diameter were obtained as a function of intraluminal pressure (P(i)) in isolated cannulated gracilis muscle arterioles (diameter approximately 120 micrometer) of normotensive Wistar rats (WR) and spontaneously hypertensive rats (SHR). In the absence of extracellular Ca(2+), increases in P(i) from 20 to 160 mm Hg increased the passive diameter of arterioles without changes in R(Ca). In the presence of extracellular Ca(2+) and endothelium, increases in P(i) elicited similar increases in R(Ca) (30+/-7% for control and 33+/-8% for SHR at 160 mm Hg) but a significantly (P<0.05) greater constriction of SHR arterioles compared with WR arterioles (at 160 mm Hg, 55+/-4% versus 38+/-2%, respectively, of passive diameter). In the absence of the endothelium, P(i)-induced changes in the R(Ca) and diameter of SHR and WR arterioles did not differ significantly. Also, a step increase in P(i) (from 80 to 140 mm Hg) elicited a similar increase in R(Ca) but greater constrictions in SHR versus WR arterioles. In the presence of the TxA(2) receptor inhibitor SQ29,548 and the ET(A) receptor inhibitor BQ123, there was no difference between responses of SHR and WR arterioles. In WR arterioles, increasing concentrations of KCl elicited a significant increase in R(Ca) (38+/-7% at 80 mmol/L) and completely constricted the arterioles. In contrast, constrictions to ET (52+/-7% at 3x10(-12) mol/L) and the TxA(2) agonist U46619 (40+/-8% at 3x10(-9) mol/L) were not accompanied by increases in R(Ca) at submaximal concentrations. Collectively, these findings suggest that in hypertension, endothelium-derived ET and PGH(2)/TxA(2) increase the Ca(2+) sensitivity of the contractile apparatus of arteriolar smooth muscle; thus, the similar increases in [Ca(2+)](i) in response to the elevation of intraluminal pressure elicit greater myogenic constriction.

    Topics: Animals; Arterioles; Calcium; Constriction, Pathologic; Cytophotometry; Disease Models, Animal; Endothelins; Endothelium; Hypertension; Microscopy, Video; Muscle Contraction; Muscle, Smooth, Vascular; Prostaglandin H2; Prostaglandins H; Rats; Rats, Inbred SHR; Rats, Wistar; Thromboxane A2; Vascular Resistance

2000