prostaglandin-d2 and Weight-Loss

prostaglandin-d2 has been researched along with Weight-Loss* in 2 studies

Other Studies

2 other study(ies) available for prostaglandin-d2 and Weight-Loss

ArticleYear
Curcumin inhibits trinitrobenzene sulphonic acid-induced colitis in rats by activation of peroxisome proliferator-activated receptor gamma.
    International immunopharmacology, 2006, Volume: 6, Issue:8

    Curcumin is a widely used spice with anti-inflammatory and anti-cancer properties. It has been reported that curcumin held therapeutic effects on experimental colitis by inhibition of nuclear factor kappa B (NF-kappaB). The peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor with anti-tumor and anti-inflammatory effects and its activation may inhibit the nuclear translocation of NF-kappaB. Several studies have shown that PPARgamma ligands had an important therapeutic effect in colitis. However there is no report about the alteration of PPARgamma in trinitrobenzene sulphonic acid (TNBS)-induced colitis treated with curcumin. In this study, we administered curcumin (30 mg/kg/day) by intraperitoneal injection immediately after colitis was induced and the injection lasted for two weeks. have evaluated the effects of curcumin on the colitis induced by trinitrobenzene sulphonic acid (TNBS). Curcumin (30 mg/kg d) was administered by intraperitoneal just after colitis was induced and lasted for two weeks. Therapeutic effects of dexamethasone (Dex, 2 mg/kg d) alone and the combined effects of curcumin+Dex were also examined. We found that curcumin improved long-term survival rate of disease-bearing rats, promoted rat body weight recovery, and decreased macroscopic scores of the colitis. The expression levels of PPARgamma, 15-deoxy-D12,14-prostaglandin J(2) (15d-PGJ(2)) and prostaglandin E(2) (PGE(2)) were all increased, but the expression level of cyclooxygenase-2 (COX-2) was decreased in rats after administration of curcumin. Treatment with Dex improved PPARgamma expression and inhibited the expression of COX-2, 15d-PGJ(2) and PGE(2). Combined effects of curcumin+Dex were similar to that of Dex. In summary, curcumin showed therapeutic effects on TNBS-induced colitis and the mechanisms by which curcumin exerts its effects may involve activation of PPARgamma and its ligands.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Colitis; Colon; Curcumin; Cyclooxygenase 2; Cytokines; Dexamethasone; Dinoprostone; Drug Therapy, Combination; Enzyme-Linked Immunosorbent Assay; Gene Expression; PPAR gamma; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Specific Pathogen-Free Organisms; Time Factors; Trinitrobenzenesulfonic Acid; Weight Loss

2006
Effect of rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 on bleomycin-induced lung injury.
    The European respiratory journal, 2005, Volume: 25, Issue:2

    Thiazolidinedione rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), are two peroxisome proliferator-activated receptor (PPAR)-gamma ligands. The aim of this study was to investigate the effect of rosiglitazone and 15d-PGJ2 on the lung injury caused by bleomycin administration. Mice subjected to intratracheal administration of bleomycin developed significant lung injury. An increase in immunoreactivity to nitrotyrosine, poly(ADP ribose) polymerase (PARP) and inducible nitric oxide synthase as well as a significant loss of body weight and mortality was observed in the lung of bleomycin-treated mice. Administration of the two PPAR-gamma agonists rosiglitazone (10 mg x kg(-1) i.p.) and 15d-PGJ2 (30 microg x kg(-1) i.p.) significantly reduced the: 1) loss of body weight, 2) mortality rate, 3) infiltration of the lung with polymorphonuclear neutrophils (myeloperoxidase activity), 4) oedema formation, and 5) histological evidence of lung injury. Administration of rosiglitazone and 15d-PGJ2 also markedly reduced the nitrotyrosine, PARP and inducible nitric oxide synthase formation. In addition, treatment with the PPAR-gamma antagonist bisphenol A diglycidyl ether (1 mg x kg(-1) i.p. 30 min before the rosiglitazone or 15d-PGJ2) significantly antagonised the effect of the two PPAR-gamma agonists. These results demonstrate that the two peroxisome proliferator-activated receptor-gamma agonists, rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, significantly reduce lung injury induced by bleomycin in mice.

    Topics: Analysis of Variance; Animals; Benzhydryl Compounds; Biopsy; Bleomycin; Epoxy Compounds; Immunoenzyme Techniques; Instillation, Drug; Male; Mice; Nitric Oxide Synthase; Peroxidase; Poly(ADP-ribose) Polymerases; Prostaglandin D2; Pulmonary Fibrosis; Random Allocation; Rosiglitazone; Thiazolidinediones; Tyrosine; Weight Loss

2005