prostaglandin-d2 and Thyroid-Neoplasms

prostaglandin-d2 has been researched along with Thyroid-Neoplasms* in 4 studies

Other Studies

4 other study(ies) available for prostaglandin-d2 and Thyroid-Neoplasms

ArticleYear
Differential Effects of Estrogen Receptor Alpha and Beta on Endogenous Ligands of Peroxisome Proliferator-Activated Receptor Gamma in Papillary Thyroid Cancer.
    Frontiers in endocrinology, 2021, Volume: 12

    The inhibition of estrogen receptor alpha (ERα) or the activation of ERβ can inhibit papillary thyroid cancer (PTC), but the precise mechanism is not known. We aimed to explore the role of ERα and ERβ on the production of endogenous peroxisome proliferator-activated receptor gamma (PPARγ) ligands in PTC.. 2 PTC cell lines, 32 pairs of PTC tissues and matched normal thyroid tissues were used in this study. The levels of endogenous PPARγ ligands 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), 13-S-hydroxyoctadecadienoic acid (13(S)-HODE), and15-deoxy-Δ12,14-prostaglandin J2 (PGJ2) were measured by ELISA.. The levels of PGJ2 and 15(S)-HETE were significantly reduced in PTC, but 13(S)-HODE was not changed. Activation of ERα or inhibition of ERβ significantly downregulated the production of PGJ2, 15(S)-HETE and 13(S)-HODE, whereas inhibition of ERα or activation of ERβ markedly upregulated the production of these three ligands. Application of endogenous PPARγ ligands inhibited growth, induced apoptosis of cancer cells, and promoted the efficacy of chemotherapy.. The levels of endogenous PPARγ ligands PGJ2 and 15(S)-HETE are significantly decreased in PTC. The inhibition of ERα or activation of ERβ can inhibit PTC by stimulating the production of endogenous PPARγ ligands to induce apoptosis in cancer cells.

    Topics: Adult; Apoptosis; Cell Movement; Cell Proliferation; Estrogen Receptor beta; Female; Humans; Hydroxyeicosatetraenoic Acids; Ligands; Linoleic Acids; Male; Middle Aged; PPAR gamma; Prognosis; Prostaglandin D2; Thyroid Cancer, Papillary; Thyroid Neoplasms; Tumor Cells, Cultured

2021
Effects of PPARgamma agonists on cell survival and focal adhesions in a Chinese thyroid carcinoma cell line.
    Journal of cellular biochemistry, 2006, Jul-01, Volume: 98, Issue:4

    Peroxisome proliferator-activated receptor gamma (PPARgamma) agonists cause cell death in several types of cancer cells. The aim of this study was to examine the effects of two PPARgamma agonists, ciglitazone and 15-deoxy-delta(12,14)-prostaglandin J2 (15dPGJ2), on the survival of thyroid carcinoma CGTH W-2 cells. Both ciglitazone and 15dPGJ2 decreased cell viability in a time- and dose-dependent manner. Cell death was mainly due to apoptosis, with a minor contribution from necrosis. Increased levels of active caspase 3, cleaved poly (ADP-ribose) polymerase (PARP), and cytosolic cytochrome-c were noted. In addition, ciglitazone and 15dPGJ2 induced detachment of CGTH W-2 cells from the culture substratum. Both the protein levels and immunostaining signals of focal adhesion (FA) proteins, including vinculin, integrin beta1, focal adhesion kinase (FAK), and paxillin were decreased after PPARgamma agonist treatment. Meanwhile, reduced phosphorylation of FAK and paxillin was noted. Furthermore, PPARgamma agonists induced expression of protein tyrosine phosphatase-PEST (PTP-PEST), and of phosphatase and tensin homologue deleted on chromosome ten (PTEN). The upregulation of these phosphatases might contribute to the dephosphorylation of FAK and paxillin, since pre-treatment with orthovanadate prevented PPARgamma agonist-induced dephosphorylation of FAK and paxillin. Perturbation of CGTH W-2 cells with anti-integrin beta1 antibodies induced FA disruption and apoptosis in the same cells, thus the downregulation of integrin beta1 by PPARgamma agonists resulted in FA disassembly and might induce apoptosis via anoikis. Our results suggested the presence of crosstalk between apoptosis and integrin-FA signaling. Moreover, upregulation and activation of PTEN was correlated with reduced phosphorylation of Akt, and this consequence disfavored cell survival. In conclusion, PPARgamma agonists induced apoptosis of thyroid carcinoma cells via the cytochrome-c caspase 3 and PTEN-Akt pathways, and induced necrosis via the PARP pathway.

    Topics: Apoptosis; Asian People; Carcinoma; Cell Line, Tumor; Cell Survival; Dose-Response Relationship, Drug; Focal Adhesions; Humans; Hypoglycemic Agents; Necrosis; Neoplasm Proteins; PPAR gamma; Prostaglandin D2; Signal Transduction; Thiazolidinediones; Thyroid Neoplasms

2006
Antitumor effects of peroxisome proliferator activate receptor gamma ligands on anaplastic thyroid carcinoma.
    International journal of oncology, 2004, Volume: 24, Issue:1

    Anaplastic thyroid carcinoma is an aggressive neoplasm and resistant to all sorts of treatment due to its rapid growth and invasive potential. Peroxisome proliferator-activated receptor gamma (PPARgamma) is a nuclear receptor modulating variety of biological properties, such as regulating of adipogenesis, inhibition of cancer cell proliferation or differentiation of tumor cells. The purpose of this study was to evaluate the possibility for the therapeutic effect of PPARgamma ligands against anaplastic thyroid tumor in vitro. Expressions of the PPARc gene and protein were examined in 5 human anaplastic carcinoma cell lines (MSA, IAA, ROA, K119 and KOA-2). We next evaluated the effects of PPARgamma ligands (Thiazolidinedione, Prostaglandin J2 and RS1303) on proliferation, differentiation, apoptosis and invasion. Five cell lines showed higher level of the PPARc gene and protein expression than papillary thyroid carcinoma. PPARgamma ligands inhibited cell proliferation by inducing apoptosis instead of differentiation in dose-dependent manner. PPARgamma ligands also down regulated the invasive potential of 5 cell lines. The inhibitory effect of proliferation or invasion was prominent in 3 cell lines, which exhibited higher expression level of the PPARc gene or protein. Our results indicated that PPARgamma ligands modify malignant potential of anaplastic carcinoma cell lines altering growth or invasive properties, suggesting that PPARgamma could be potentially the novel molecular target for human thyroid anaplastic carcinoma.

    Topics: Antineoplastic Agents; Apoptosis; Blotting, Western; Carcinoma; Cell Differentiation; Cell Division; Cell Line, Tumor; Cell Movement; Dose-Response Relationship, Drug; Gene Expression Regulation, Neoplastic; Humans; In Situ Nick-End Labeling; Ligands; Neoplasm Invasiveness; Prostaglandin D2; Receptors, Cytoplasmic and Nuclear; RNA, Messenger; Thiazolidinediones; Thyroid Neoplasms; Transcription Factors

2004
15-Deoxy-delta12,14-prostaglandin J2 induces apoptosis of a thyroid papillary cancer cell line (CG3 cells) through increasing intracellular iron and oxidative stress.
    Anti-cancer drugs, 2002, Volume: 13, Issue:7

    Treatment of carcinoma cell lines with 15-deoxy-delta12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-gamma, has been reported to induce apoptosis and/or inhibit proliferation. In this study, we investigated the cytotoxic effect and the action mechanisms of 15d-PGJ2 in a thyroid papillary cancer cell line, CG3. The results indicate that 15d-PGJ2 caused cytotoxicity and increased the amount of intracellular reactive oxygen species (ROS) in these cells. Mitochondrial oxidative phosphorylation inhibitors (carbonyl cyanide m-chloro-phenylhydrazone, oligomycin, cyclosporin A and rotenone), NADPH oxidase inhibitor (diphenyleneiodonium), xanthine oxidase inhibitor (allopurinol) and NO synthase inhibitor (N-monomethyl-L-arginine acetate) did not reduce the generation of ROS. However, catalase, N-acetyl-cysteine and the iron chelator desferri-oxamine decreased the intracellular ROS of 15d-PGJ2-treated CG3 cells. Furthermore, 15d-PGJ2 enhanced the accumulation of iron in the CG3 cells. These data suggest that 15d-PGJ2 induces the generation of ROS by enhancing the accumulation of intracellular iron and that the increased oxidative stress may cause apoptosis of CG3 cells.

    Topics: Apoptosis; Carcinoma, Papillary; Caspases; Cell Count; Cell Survival; Enzyme Activation; Humans; Immunologic Factors; Indicators and Reagents; Iron; Iron Chelating Agents; Lipid Peroxidation; Oxidative Stress; Prostaglandin D2; Reactive Oxygen Species; Stimulation, Chemical; Thyroid Neoplasms; Tumor Cells, Cultured

2002