prostaglandin-d2 and Sepsis

prostaglandin-d2 has been researched along with Sepsis* in 7 studies

Other Studies

7 other study(ies) available for prostaglandin-d2 and Sepsis

ArticleYear
Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis.
    Clinical and translational medicine, 2023, Volume: 13, Issue:11

    Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU).. Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity.. Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity.. A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.

    Topics: 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid; COVID-19; Cyclooxygenase 2; Eicosanoids; Humans; Leukocytes, Mononuclear; Leukotriene E4; Lipidomics; Phospholipases A2, Secretory; Prostaglandin D2; SARS-CoV-2; Sepsis

2023
Thymopentin improves the survival of septic mice by promoting the production of 15-deoxy-prostaglandin J2 and activating the PPARγ signaling pathway.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2020, Volume: 34, Issue:9

    Sepsis, a systemic inflammatory response syndrome (SIRS) caused by infection, is a major public health concern with limited therapeutic options. Infection disturbs the homeostasis of host, resulting in excessive inflammation and immune suppression. This has prompted the clinical use of immunomodulators to balance host response as an alternative therapeutic strategy. Here, we report that Thymopentin (TP5), a synthetic immunomodulator pentapeptide (Arg-Lys-Asp-Val-Tyr) with an excellent safety profile in the clinic, protects mice against cecal ligation and puncture (CLP)-induced sepsis, as shown by improved survival rate, decreased level of pro-inflammatory cytokines and reduced ratios of macrophages and neutrophils in spleen and peritoneum. Regarding mechanism, TP5 changed the characteristics of LPS-stimulated macrophages by increasing the production of 15-deoxy-Δ

    Topics: Animals; Cecum; Cytokines; Inflammation Mediators; Ligation; Male; Mice, Inbred C57BL; PPAR gamma; Prostaglandin D2; Punctures; Sepsis; Signal Transduction; Survival Rate; Thymopentin

2020
Metabolic systems analysis of LPS induced endothelial dysfunction applied to sepsis patient stratification.
    Scientific reports, 2018, 05-01, Volume: 8, Issue:1

    Endothelial dysfunction contributes to sepsis outcome. Metabolic phenotypes associated with endothelial dysfunction are not well characterised in part due to difficulties in assessing endothelial metabolism in situ. Here, we describe the construction of iEC2812, a genome scale metabolic reconstruction of endothelial cells and its application to describe metabolic changes that occur following endothelial dysfunction. Metabolic gene expression analysis of three endothelial subtypes using iEC2812 suggested their similar metabolism in culture. To mimic endothelial dysfunction, an in vitro sepsis endothelial cell culture model was established and the metabotypes associated with increased endothelial permeability and glycocalyx loss after inflammatory stimuli were quantitatively defined through metabolomics. These data and transcriptomic data were then used to parametrize iEC2812 and investigate the metabotypes of endothelial dysfunction. Glycan production and increased fatty acid metabolism accompany increased glycocalyx shedding and endothelial permeability after inflammatory stimulation. iEC2812 was then used to analyse sepsis patient plasma metabolome profiles and predict changes to endothelial derived biomarkers. These analyses revealed increased changes in glycan metabolism in sepsis non-survivors corresponding to metabolism of endothelial dysfunction in culture. The results show concordance between endothelial health and sepsis survival in particular between endothelial cell metabolism and the plasma metabolome in patients with sepsis.

    Topics: Biomarkers; Cell Line; Chromatography, High Pressure Liquid; Endothelial Cells; Fatty Acids; gamma-Aminobutyric Acid; Glycocalyx; Human Umbilical Vein Endothelial Cells; Humans; Interferon-gamma; Kynurenine; Lipopolysaccharides; Lysophospholipids; Metabolome; Models, Biological; Nitric Oxide; Permeability; Polysaccharides; Prostaglandin D2; Sepsis; Sphingosine; Survival Analysis; Tryptophan

2018
Pioglitazone reduces inflammation through inhibition of NF-κB in polymicrobial sepsis.
    Innate immunity, 2014, Volume: 20, Issue:5

    The insulin sensitizing thiazolidinedione drugs, rosiglitazone and pioglitazone are specific peroxisome proliferator-activated receptor-gamma agonists and reduce pro-inflammatory responses in patients with type 2 diabetes and coronary artery disease, and may be beneficial in sepsis. Sepsis was induced in 8-10-wk-old C57BL/6 mice by cecal ligation and puncture (CLP) with a 22 -g double puncture technique. Mice received an i.p. injection of vehicle (DMSO:PBS) or pioglitazone (20 mg/kg) at 1 h and 6 h after CLP, and were sacrificed at various time points. In sepsis, vehicle-treated mice had hypoglycemia, increased lung injury and increased lung neutrophil infiltration. Pro-inflammatory plasma cytokines were increased, but the plasma adipokine, adiponectin, was decreased in vehicle-treated septic mice. This corresponded with inhibitor κB (IκBα) protein degradation and an increase in NF-κB activity in lung. Pioglitazone treatment improved plasma Glc and adiponectin levels, and decreased pro-inflammatory cytokines. Lung IκBα protein expression increased and corresponded with a decrease in NF-κB activity in the lung from pioglitazone-treated mice. Pioglitazone reduces the inflammatory response in polymicrobial sepsis in part through inhibition of NF-κB and may be a novel therapy in sepsis.

    Topics: Adipokines; Animals; Cytokines; Hypoglycemia; Hypoglycemic Agents; I-kappa B Proteins; Inflammation; Lung; Male; Mice; Mice, Inbred C57BL; NF-kappa B; Pioglitazone; PPAR gamma; Prostaglandin D2; Sepsis; Thiazolidinediones

2014
Sepsis-induced inhibition of neutrophil chemotaxis is mediated by activation of peroxisome proliferator-activated receptor-{gamma}.
    Blood, 2008, Nov-15, Volume: 112, Issue:10

    Neutrophils (polymorphonuclear leukocytes [PMNs]) are critical to the immune response, including clearance of infectious pathogens. Sepsis is associated with impaired PMN function, including chemotaxis. PMNs express peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a ligand-activated nuclear transcription factor involved in immune and inflammatory regulation. The role of PPAR-gamma in PMN responses, however, is not well characterized. We report that freshly isolated human PMNs constitutively express PPAR-gamma, which is up-regulated by the sepsis-induced cytokines TNF-alpha and IL-4. PMN chemotactic responses to formylmethionyl-leucyl-phenylalanine (fMLP) and IL-8 were dose-dependently inhibited by treatment with the PPAR-gamma ligands troglitazone and 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)) and by transfection of PMN-like HL-60 cells with a constitutively active PPAR-gamma construct. Inhibition of chemotaxis by PPAR-gamma ligands correlated with decreases in extracellular signal-regulated kinase-1 and -2 activation, actin polymerization, and adherence to a fibrinogen substrate. Furthermore, PMN expression of PPAR-gamma was increased in sepsis patients and mice with either of 2 models of sepsis. Finally, treatment with the PPAR-gamma antagonist GW9662 significantly reversed the inhibition of PMN chemotaxis and increased peritoneal PMN recruitment in murine sepsis. This study indicates that PPAR-gamma activation is involved in PMN chemotactic responses in vitro and may play a role in the migration of these cells in vivo.

    Topics: Actins; Anilides; Animals; Antineoplastic Agents; Cell Adhesion; Chemotaxis; Chromans; Disease Models, Animal; Dose-Response Relationship, Drug; Female; Fibrinogen; HL-60 Cells; Humans; Inflammation; Interleukin-4; Interleukin-8; Male; Mice; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; N-Formylmethionine Leucyl-Phenylalanine; PPAR gamma; Prostaglandin D2; Sepsis; Thiazolidinediones; Troglitazone; Tumor Necrosis Factor-alpha; Up-Regulation

2008
The response of neonatal rat ventricular myocytes to lipopolysaccharide-induced stress.
    Shock (Augusta, Ga.), 2006, Volume: 25, Issue:5

    Sepsis induced by exposure to lipopolysaccharide (LPS) can be life-threatening and lead to multiple-organ dysfunction. Sepsis-associated cardiac dysfunction is a primary cause of mortality. The response of isolated cardiac myocytes to LPS exposure is poorly understood. Cultured neonatal rat ventricular cardiomyocytes were used to evaluate the response to LPS exposure. Other authors have reported that LPS exposure at doses sufficient to induce tumor necrosis factor alpha (TNF-alpha) production and apoptosis in adult cardiomyocytes do not induce apoptosis in neonatal cardiomyocytes. We therefore hypothesized that neonatal cardiomyocytes have innate protective mechanisms that protect from septic damage. Cultured neonatal rat ventricular cardiomyocytes were stimulated by exposure to LPS for varying lengths of time. NFkappaB signaling pathways, TNF-alpha production, and Akt activation were monitored. We also assessed the induction of apoptosis in these cells by monitoring caspase-3 activity. LPS rapidly stimulates nuclear translocation of NFkappaB and Akt activation. TNF-alpha production is also stimulated. However, high doses of LPS are unable to induce apoptosis in these cells, and protection is not a function of Akt activation. LPS treatment also stimulated the levels of cyclooxygenase-2 and the production of downstream metabolites, specifically PGE2 and 15deoxyDelta12-14PGJ2 (15dPGJ2). Specific inhibition of cyclooxygenase-2 activity induced apoptosis in the presence of LPS, whereas direct exposure to 15dPGJ2 at pharmacological levels induced apoptosis. Neonatal rat ventricular cardiomyocytes have innate protective mechanisms that prevent apoptotic cell death after LPS exposure. Metabolic products of arachidonic acid metabolized by the cyclooxygenase pathway can be potentially apoptotic or antiapoptotic. The balance of these products within these cells may define the cellular response to LPS exposure.

    Topics: Animals; Animals, Newborn; Caspase 3; Caspases; Cell Nucleus; Cells, Cultured; Cyclooxygenase 2; Heart Ventricles; Lipopolysaccharides; Myocytes, Cardiac; NF-kappa B; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Sepsis; Signal Transduction; Tumor Necrosis Factor-alpha

2006
Peroxisome proliferator activator receptor-gamma ligands, 15-deoxy-Delta(12,14)-prostaglandin J2 and ciglitazone, reduce systemic inflammation in polymicrobial sepsis by modulation of signal transduction pathways.
    Journal of immunology (Baltimore, Md. : 1950), 2003, Dec-15, Volume: 171, Issue:12

    Peroxisome proliferator activator receptor-gamma (PPARgamma) is a nuclear receptor that controls the expression of several genes involved in metabolic homeostasis. We investigated the role of PPARgamma during the inflammatory response in sepsis by the use of the PPARgamma ligands, 15-deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)) and ciglitazone. Polymicrobial sepsis was induced by cecal ligation and puncture in rats and was associated with hypotension, multiple organ failure, and 50% mortality. PPARgamma expression was markedly reduced in lung and thoracic aorta after sepsis. Immunohistochemistry showed positive staining for nitrotyrosine and poly(ADP-ribose) synthetase in thoracic aortas. Plasma levels of TNF-alpha, IL-6, and IL-10 were increased. Elevated activity of myeloperoxidase was found in lung, colon, and liver, indicating a massive infiltration of neutrophils. These events were preceded by degradation of inhibitor kappaBalpha (IkappaBalpha), activation of IkappaB kinase complex, and c-Jun NH(2)-terminal kinase and, subsequently, activation of NF-kappaB and AP-1 in the lung. In vivo treatment with ciglitazone or 15d-PGJ(2) ameliorated hypotension and survival, blunted cytokine production, and reduced neutrophil infiltration in lung, colon, and liver. These beneficial effects of the PPARgamma ligands were associated with the reduction of IkappaB kinase complex and c-Jun NH(2)-terminal kinase activation and the reduction of NF-kappaB and AP-1 DNA binding in the lung. Furthermore, treatment with ciglitazone or 15d-PGJ(2) up-regulated the expression of PPARgamma in lung and thoracic aorta and abolished nitrotyrosine formation and poly(ADP-ribose) expression in aorta. Our data suggest that PPARgamma ligands attenuate the inflammatory response in sepsis through regulation of the NF-kappaB and AP-1 pathways.

    Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Aorta, Thoracic; Bacteremia; Blood Glucose; Blood Pressure; Down-Regulation; I-kappa B Kinase; I-kappa B Proteins; Interleukin-10; Interleukin-6; Leukocyte Count; Ligands; Lung; Male; Microbodies; Mitogen-Activated Protein Kinase 8; Mitogen-Activated Protein Kinases; Neutrophil Infiltration; NF-kappa B; NF-KappaB Inhibitor alpha; Poly(ADP-ribose) Polymerases; Prostaglandin D2; Protein Serine-Threonine Kinases; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Sepsis; Signal Transduction; Survival Rate; Thiazolidinediones; Transcription Factor AP-1; Transcription Factors; Tumor Necrosis Factor-alpha; Tyrosine

2003