prostaglandin-d2 has been researched along with Reperfusion-Injury* in 13 studies
13 other study(ies) available for prostaglandin-d2 and Reperfusion-Injury
Article | Year |
---|---|
miR-211-5p alleviates focal cerebral ischemia-reperfusion injury in rats by down-regulating the expression of COX2.
The present study was to investigate the role of microRNA (miR)-211-5p on cerebral ischemia-reperfusion injury (CIRI) and clarify its underlying mechanisms. Middle cerebral artery occlusion/reperfusion (MCAO/R) was operated on male Sprague Dawley (SD) rats, oxygen-glucose deprivation/reperfusion (OGD/R) was conducted on pheochromocytoma-12 (PC12) cells. Here, we found that miR-211-5p and Cyclooxygenase (COX2) expressions were altered in the plasma, cortex and hippocampus of MCAO/R-treated rats, as well as in the OGD/R-treaded PC12 cells. In vivo, overexpression of miR-211-5p resulted in decrease of infarct volumes, neurological deficit scores and histopathological damage. In vitro, miR-211-5p overexpression significantly decreased cell apoptosis and Lactate dehydrogenase (LDH) release rate, increased cell viability. Furthermore, our data showed that miR-211-5p overexpression markedly reduced the expressions of COX2 mRNA and protein, and the contents of Prostaglandin D2 (PGD2), PGE2, tumor necrosis factor-α (TNF-α) and Interleukin-1β (IL-1β). In addition, inhibition of COX2 significantly rescued the effects of miR-211-5p inhibitor. At last, dual luciferase experimental data showed that miR-211-5p regulated the mRNA stability of COX2 by directly binding to the 3'-untranslated region (3'-UTR) of COX2. In conclusion, our data suggested the neuroprotective effects of miR-211-5p on CIRI by targeting COX2. Topics: Animals; Antagomirs; Apoptosis; Brain Ischemia; Cell Survival; Cerebral Cortex; Cyclooxygenase 2; Dinoprostone; Gene Expression Regulation; Glucose; Hippocampus; Infarction, Middle Cerebral Artery; Interleukin-1beta; L-Lactate Dehydrogenase; Male; MicroRNAs; Oxygen; PC12 Cells; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Reperfusion Injury; RNA Stability; RNA, Messenger; Signal Transduction; Tumor Necrosis Factor-alpha | 2020 |
15-Deoxy-Δ
Topics: Animals; Antioxidants; Apoptosis; Autophagy; Kupffer Cells; Liver; Liver Diseases; Male; Mice, Inbred BALB C; Prostaglandin D2; Protective Agents; Reactive Oxygen Species; Reperfusion Injury | 2017 |
15d-PGJ2 Reduced Microglia Activation and Alleviated Neurological Deficit of Ischemic Reperfusion in Diabetic Rat Model.
To investigate the effect of PPARγ agonist 15d-PGJ2 treatment on the microglia activation and neurological deficit of ischemia reperfusion in diabetic rat model, adult Sprague-Dawley rats were sacrificed for the research. The rats were randomly categorized into four groups: (1) sham-operated group; (2) standard ischemia group; (3) diabetic ischemia group; (4) diabetic ischemia group with diabetes and treated with 15d-PGJ2. Compared to the sham-operated group, all the ischemic groups have significantly severer neurological deficits, more TNF-α and IL-1 expression, increased labeling of apoptotic cells, increased CD68 positive staining of brain lesion, and increased volume of infarct and cerebral edema in both 24 hours and 7 days after reperfusion. Interestingly, reduced neurological deficits, decreased TNF-α and IL-1 expression, less apoptotic cells and CD68 positive staining, and alleviated infarct and cerebral edema volume were observed when 15d-PGJ2 was intraperitoneally injected after reperfusion in diabetic ischemia group, suggesting its neuroprotective role in regulating microglia activation, which may have a therapeutic application in the future. Topics: Animals; Antigens, CD; Antigens, Differentiation, Myelomonocytic; Apoptosis; Brain Edema; Brain Infarction; Diabetes Mellitus, Experimental; Interleukin-1; Microglia; PPAR gamma; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Tumor Necrosis Factor-alpha | 2015 |
Peroxisome proliferator-activated receptor-γ agonist 15d-prostaglandin J2 mediates neuronal autophagy after cerebral ischemia-reperfusion injury.
Peroxisome proliferator-activated receptor-γ (PPAR-γ) has recently emerged as potential therapeutic agents for cerebral ischemia-reperfusion (I/R) injury because of anti-neuronal apoptotic actions. However, whether PPAR-γ activation mediates neuronal autophagy in such conditions remains unclear. Therefore, in this study, we investigated the role of PPAR-γ agonist 15-PGJ(2) on neuronal autophagy induced by I/R. The expression of autophagic-related protein in ischemic cortex such as LC3-II, Beclin 1, cathepsin-B and LAMP1 increased significantly after cerebral I/R injury. Furthermore, increased punctate LC3 labeling and cathepsin-B staining occurred in neurons. Treatment with PPAR-γ agonist 15d-PGJ(2) decreased not only autophagic-related protein expression in ischemic cortex, but also immunoreactivity of LC3 and cathepsin-B in neurons. Autophagic inhibitor 3-methyladenine (3-MA) decreased LC3-II levels, reduced the infarct volume, and mimicked some protective effect of 15d-PGJ(2) against cerebral I/R injury. These results indicate that PPAR-γ agonist 15d-PGJ(2) exerts neuroprotection by inhibiting neuronal autophagy after cerebral I/R injury. Although the molecular mechanisms underlying PPAR-γ agonist in mediating neuronal autophagy remain to be determined, neuronal autophagy may be a new target for PPAR-γ agonist treatment in cerebral I/R injury. Topics: Animals; Autophagy; Brain Ischemia; Cathepsin B; Disease Models, Animal; Humans; Male; Mice; Microtubule-Associated Proteins; Neurons; Neuroprotective Agents; PPAR gamma; Prostaglandin D2; Reperfusion Injury | 2013 |
Mast cells contribute to altered vascular reactivity and ischemia-reperfusion injury following cerium oxide nanoparticle instillation.
Cerium oxide (CeO₂) represents an important nanomaterial with wide ranging applications. However, little is known regarding how CeO₂ exposure may influence pulmonary or systemic inflammation. Furthermore, how mast cells would influence inflammatory responses to a nanoparticle exposure is unknown. We thus compared pulmonary and cardiovascular responses between C57BL/6 and B6.Cg-Kit(W-sh) mast cell deficient mice following CeO₂ nanoparticle instillation. C57BL/6 mice instilled with CeO₂ exhibited mild pulmonary inflammation. However, B6.Cg-Kit(W-sh) mice did not display a similar degree of inflammation following CeO₂ instillation. Moreover, C57BL/6 mice instilled with CeO₂ exhibited altered aortic vascular responses to adenosine and an increase in myocardial ischemia/reperfusion injury which was absent in B6.Cg-Kit(W-sh) mice. In vitro CeO₂ exposure resulted in increased production of PGD₂, TNF-α, IL-6 and osteopontin by cultured mast cells. These findings demonstrate that CeO₂ nanoparticles activate mast cells contributing to pulmonary inflammation, impairment of vascular relaxation and exacerbation of myocardial ischemia/reperfusion injury. Topics: Adenosine; Analysis of Variance; Animals; Aorta, Thoracic; Bronchoalveolar Lavage Fluid; Cerium; Chemokine CCL3; Gene Expression Regulation; Histocytochemistry; Interleukin-10; Interleukin-13; Interleukin-6; Lung; Male; Mast Cells; Metal Nanoparticles; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocardial Infarction; Myocardium; Osteopontin; Particle Size; Pneumonia; Prostaglandin D2; Reperfusion Injury; Transforming Growth Factor beta; Tumor Necrosis Factor-alpha | 2011 |
PPAR-gamma agonist protects against intestinal injury during necrotizing enterocolitis.
Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-gamma in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-gamma agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min with variable periods of reperfusion. I/R injury resulted in early induction of PPAR-gamma expression and activation of NF-kappaB in small intestine. Pretreatment with PPAR-gamma agonist, 15d-PGJ(2), attenuated intestinal NF-kappaB response and I/R-induced gut injury. Activation of PPAR-gamma demonstrated a protective effect on small bowel during I/R-induced gut injury. Topics: Animals; Cell Line; Enterocolitis, Necrotizing; Humans; Intestine, Small; Mice; Mice, Inbred Strains; NF-kappa B; PPAR gamma; Prostaglandin D2; Reperfusion Injury | 2009 |
Peroxisome proliferator-activated receptor-gamma protects against hepatic ischemia/reperfusion injury in mice.
The function of peroxisome proliferator-activated receptor-gamma (PPARgamma) in hepatic inflammation and injury is unclear. In this study, we sought to determine the role of PPARgamma in hepatic ischemia/reperfusion injury in mice. Male mice were subjected to 90 minutes of partial hepatic ischemia followed by up to 8 hours of reperfusion. PPARgamma was found to be constitutively activated in hepatocytes but not in nonparenchymal cells. Upon induction of ischemia, hepatic PPARgamma activation rapidly decreased and remained suppressed throughout the 8-hour reperfusion period. This reduced activation was not a result of decreased protein availability as hepatic nuclear PPARgamma, retinoid X receptor-alpha (RXRalpha), and PPARgamma/RXRalpha heterodimer expression was maintained. Accompanying the decrease in PPARgamma activation was a decrease in the expression of the natural ligand 15-deoxy-Delta(12,14)-prostaglandin J(2). This was associated with reduced interaction of PPARgamma and the coactivator, p300. To determine whether PPARgamma activation is hepatoprotective during hepatic ischemia/reperfusion injury, mice were treated with the PPARgamma agonists, rosiglitazone and connecting peptide. These treatments increased PPARgamma activation and reduced liver injury compared to untreated mice. Furthermore, PPARgamma-deficient mice had more liver injury after ischemia/reperfusion than their wild-type counterparts.. These data suggest that PPARgamma is an important endogenous regulator of, and potential therapeutic target for, ischemic liver injury. Topics: Animals; C-Peptide; E1A-Associated p300 Protein; Gene Expression Regulation; Hepatocytes; Liver; Liver Diseases; Male; Mice; Mice, Inbred C57BL; PPAR gamma; Prostaglandin D2; Reperfusion Injury; Retinoid X Receptor alpha; Rosiglitazone; Thiazolidinediones | 2008 |
Focal cerebral ischemia/reperfusion injury in mice induces hematopoietic prostaglandin D synthase in microglia and macrophages.
Hematopoietic prostaglandin D synthase is a key enzyme in synthesis of prostaglandin D. Hematopoietic prostaglandin D synthase is expressed in microglia of the developing mouse brain. This study determined the serial changes and cellular localization of hematopoietic prostaglandin D synthase, and its role in cerebral ischemia/reperfusion injury using C57BL/6 mice (n=84) and bone marrow chimera mice (n=16). The latter mice were selected based on their expression of enhanced green fluorescent protein in bone marrow/blood-derived monocytes/macrophages. The middle cerebral artery was occluded for 60 min, followed by reperfusion. Hematopoietic prostaglandin D synthase expression was examined by immunohistochemistry and Western blotting. Hematopoietic prostaglandin D synthase-positive cells were mainly expressed in the peri-ischemic area at 12 h (P<0.05) and 24 h (P<0.001) after reperfusion, while they were mostly found in the transition area at 48-72 h postreperfusion (P<0.001). There was a significant increase in staining intensity as well as number of hematopoietic prostaglandin D synthase-positive cells in the ischemic core at 5-7 (P<0.001) days postreperfusion. Hematopoietic prostaglandin D synthase-positive cells also co-expressed ionized calcium-binding adapter molecule 1, a marker of microglia/macrophages, and cyclooxygenase-2, but not markers of neurons, oligodendrocytes and astrocytes. Until 72 h postreperfusion, many enhanced green fluorescent protein-positive cells were negative for hematopoietic prostaglandin D synthase, but the number of hematopoietic prostaglandin D synthase-enhanced green fluorescent protein coexpressing cells increased significantly at 5-7 days after reperfusion. Our results indicate that hematopoietic prostaglandin D synthase is mainly produced by endogenous microglia until 72 h after reperfusion, but at 7 days after reperfusion, it is also produced by migrating bone marrow/blood-derived macrophages in the ischemic brain tissue. We speculate that hematopoietic prostaglandin D synthase in the brain has different functions during early and late phases of ischemia. Topics: Animals; Brain; Brain Ischemia; Calcium-Binding Proteins; Cell Count; Cell Movement; Cell Proliferation; Cyclooxygenase 2; Green Fluorescent Proteins; Hematopoiesis; Intramolecular Oxidoreductases; Lipocalins; Macrophages; Male; Mice; Mice, Inbred C57BL; Microfilament Proteins; Microglia; Prostaglandin D2; Reperfusion Injury; Transplantation Chimera; Up-Regulation | 2007 |
15d-prostaglandin J2 protects brain from ischemia-reperfusion injury.
Brain expresses abundant lipocalin-type prostaglandin (PG) D2 (PGD2) synthase but the role of PGD2 and its metabolite, 15-deoxy-Delta(12,14) PGJ2 (15d-PGJ2) in brain protection is unclear. The aim of this study is to assess the effect of 15d-PGJ2 on neuroprotection.. Adenoviral transfer of cyclooxygenase-1 (Adv-COX-1) was used to amplify the production of 15d-PGJ2 in ischemic cortex in a rat focal infarction model. Cortical 15d-PGJ2 in Adv-COX-1-treated rats was increased by 3-fold over control, which was correlated with reduced infarct volume and activated caspase 3, and increased peroxisome proliferator activated receptor-gamma (PPARgamma) and heme oxygenase-1 (HO-1). Intraventricular infusion of 15d-PGJ2 resulted in reduction of infarct volume, which was abrogated by a PPARgamma inhibitor. Rosiglitazone infusion had a similar effect. 15d-PGJ2 and rosiglitazone at low concentrations suppressed H2O2-induced rat or human neuronal apoptosis and necrosis and induced PPARgamma and HO-1 expression. The anti-apoptotic effect was abrogated by PPARgamma inhibition.. 15d-PGJ2 suppressed ischemic brain infarction and neuronal apoptosis and necrosis in a PPARgamma dependent manner. 15d-PGJ2 may play a role in controlling acute brain damage induced by ischemia-reperfusion. Topics: Adenoviridae; Animals; Apoptosis; Caspase 3; Caspases; Cells, Cultured; Cyclooxygenase 1; Gene Transfer Techniques; Genetic Therapy; Heme Oxygenase-1; Infarction, Middle Cerebral Artery; Male; Necrosis; Neurons; Neuroprotective Agents; PPAR gamma; Prostaglandin D2; Rats; Rats, Long-Evans; Reperfusion Injury; Rosiglitazone; Thiazolidinediones; Vasodilator Agents | 2006 |
The cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2 ameliorates ischemic acute renal failure.
Here we investigate the effects of the endogenous prostaglandin D2 metabolite 15-deoxy-Delta(12,14)-prostaglandin J2, on the renal dysfunction and injury caused by ischemia/reperfusion of the kidney.. Male Wistar rats, subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h, were administered 15-deoxy-Delta(12,14)-prostaglandin J2 (1 mg/kg, intravenously) 5 min prior to and again after 3 or 12 h reperfusion.. 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduced (i) renal and tubular dysfunction (serum urea and creatinine levels, creatinine clearance, fractional excretion of Na+ (FENA)), (ii) tubular and reperfusion-injury (urinary N-acetyl-beta-D-glucosaminidase, aspartate aminotransferase (ASP) and gamma-glutamyltransferase (gamma-GT)) and (iii) histological evidence of renal injury. 15-deoxy-Delta(12,14)-prostaglandin J2 also improved renal function (plasma creatinine levels) and reduced the histological signs of renal injury (after 48 h reperfusion). Administration of 15-deoxy-Delta(12,14)-prostaglandin J2 markedly reduced the expression of inducible nitric oxide synthase (iNOS) and intercellular adhesion molecule-1 during reperfusion (determined using immunohistochemistry). Immunohistochemical analysis of p65 translocation and Western blot analysis of IkappaB-alpha degradation revealed that 15-deoxy-Delta(12,14)-prostaglandin J2 inhibited the activation of nuclear factor (NF)-kappaB in renal cells. Subsequently, 15d-PGJ2 was able to significantly reduce nitric oxide production during renal ischemia/reperfusion and by primary cultures of rat proximal tubular (PT) cells incubated with interferon-gamma and bacterial lipopolysaccharide (LPS) in combination.. We demonstrate here, for the first time, that 15-deoxy-Delta(12,14)-prostaglandin J2 significantly reduces renal ischemia/reperfusion-injury via reduction of pro-inflammatory gene expression during reperfusion subsequent to the inhibition of the activation of NF-kappaB. Topics: Animals; Calcium-Binding Proteins; Cells, Cultured; I-kappa B Proteins; Intercellular Adhesion Molecule-1; Interferon-gamma; Ischemia; Kidney; Kidney Diseases; Kidney Tubules; Lipopolysaccharides; Male; Membrane Glycoproteins; Models, Animal; Nerve Tissue Proteins; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Synaptotagmin I; Synaptotagmins; Time Factors | 2004 |
A PPAR-gamma ligand, 15-deoxy-Delta12,14-prostaglandin J(2), inhibited gastric mucosal injury induced by ischemia-reperfusion in rats.
Recent studies have demonstrated the anti-inflammatory action of 15-deoxy-Delta12,14-prostaglandin J(2) (15d-PGJ(2)), a derivative of the PGD(2) metabolic pathway. Acute inflammation, including neutrophil activation, plays a critical role in the pathogenesis of ischemia-reperfusion (I/R). The aim of the present study was to determine the effect of 15d-PGJ(2) on I/R-induced gastric mucosal injury in rats.. Gastric mucosal damage was induced in male Wistar rats by clamping the celiac artery for 30 min followed by reperfusion. 15d-PGJ(2) (0.01-1.0 mg/kg) was given to the rats intraperitoneally 1 h before the vascular clamping. The area of gastric mucosal erosions (erosion index) was measured. Thiobarbituric acid reactive substances (TBARS) and tissue-associated myeloperoxidase (MPO) activity were measured in the gastric mucosa as indices of lipid peroxidation and neutrophil infiltration. The expression of tumor necrosis factor-alpha (TNF-alpha) in gastric mucosa was measured by ELISA. In addition, to elucidate whether the protective effects of 15d-PGJ(2) are related to the activation of the PPAR-gamma receptor, we also investigated the effects of a PPAR-gamma antagonist, GW9662.. After 60 min of reperfusion, the area of gastric erosion index had significantly increased from the mean basal levels. The increase in the erosion index was significantly inhibited by pretreatment with 15d-PGJ(2) in a dose-dependent manner. On the other hand, GW9662 reversed the protective effect of 15d-PGJ(2). The concentration of TBARS and MPO activity in the gastric mucosa were both significantly increased after I/R, and pretreatment with 15d-PGJ(2) significantly reduced these increases. The TNF-alpha content was significantly higher in the I/R group than in the sham-operated group. However, the increase in TNF-alpha was significantly inhibited by pretreatment with 15d-PGJ(2).. 15d-PGJ(2) significantly inhibited the severity of acute gastric mucosal injury induced by I/R in rats through PPAR-gamma-dependent mechanisms. This effect may be due, in part, to a reduction in the infiltration of neutrophils into the gastric mucosa, possibly via the inhibition of inflammatory cytokine. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Gastric Mucosa; Male; Peroxidase; PPAR gamma; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Thiobarbituric Acid Reactive Substances; Tumor Necrosis Factor-alpha | 2004 |
Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-gamma (PPAR-gamma), reduce ischaemia/reperfusion injury of the gut.
1. The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the nuclear receptor superfamily of ligand-dependent transcription factors related to retinoid, steroid and thyroid hormone receptors. The thiazolidinedione rosiglitazone and the endogenous cyclopentenone prostaglandin (PG)D2 metabolite, 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2), are two PPAR-gamma ligands, which modulate the transcription of target genes. 2. The aim of this study was to investigate the effect of rosiglitazone and 15d-PGJ2 on the tissue injury caused by ischaemia/reperfusion (I/R) of the gut. 3. I/R injury of the intestine was caused by clamping both the superior mesenteric artery and the coeliac trunk for 45 min, followed by release of the clamp allowing reperfusion for 2 or 4 h. This procedure results in splanchnic artery occlusion (SAO) shock. 4. Rats subjected to SAO developed a significant fall in mean arterial blood pressure, and only 10% of the animals survived for the entire 4 h reperfusion period. Surviving animals were killed for histological examination and biochemical studies. Rats subjected to SAO displayed a significant increase in tissue myeloperoxidase (MPO) activity and malondialdehyde (MDA) levels, significant increases in plasma tumour necrosis factor (TNF)-alpha and interleukin (IL)-1beta levels and marked injury to the distal ileum. 5. Increased immunoreactivity to nitrotyrosine was observed in the ileum of rats subjected to SAO. Staining of sections of the ileum obtained from SAO rats with anti-intercellular adhesion molecule (ICAM-1) antibody resulted in diffuse staining. 6. Administration at 30 min prior to the onset of gut ischaemia of the two PPAR-gamma agonists (rosiglitazone (0.3 mg kg-1 i.v.) and 15d-PGJ2 (0.3 mg kg-1 i.v.)) significantly reduced the (i) fall in mean arterial blood pressure, (ii) mortality rate, (iii) infiltration of the reperfused intestine with polymorphonuclear neutrophils (MPO activity), (iv) lipid peroxidation (MDA levels), (v) production of proinflammatory cytokines (TNF-alpha and IL-1beta) and (vi) histological evidence of gut injury. Administration of rosiglitazone and 15d-PGJ2 also markedly reduced the nitrotyrosine formation and the upregulation of ICAM-1 during reperfusion. 7. In order to elucidate whether the protective effects of rosiglitazone and 15d-PGJ2 are related to the activation of the PPAR-gamma receptor, we also investigated the effect of a PPAR-gamma antagonist, bisphenol A diglycidyl ether (BA Topics: Animals; Benzhydryl Compounds; Blood Pressure; Epoxy Compounds; Immunologic Factors; Intercellular Adhesion Molecule-1; Interleukin-1; Intestinal Mucosa; Intestines; Ligands; Male; Malondialdehyde; Peroxidase; Prostaglandin D2; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Reperfusion Injury; Rosiglitazone; Thiazolidinediones; Transcription Factors; Tumor Necrosis Factor-alpha; Tyrosine; Vasodilator Agents | 2003 |
Cytoprotection by the osmolytes betaine and taurine in ischemia-reoxygenation injury in the perfused rat liver.
Medium osmolarity sensitively regulates Kupffer cell functions like phagocytosis and prostaglandin (PG) and cytokine production. Betaine and taurine, recently identified as osmolytes in liver cells, interfere with these effects. Because Kupffer cell activation is an important pathogenic mechanism in ischemia-reoxygenation injury, the influence of osmolarity and osmolytes was investigated in a rat liver perfusion model of warm ischemia. Livers were perfused with different medium osmolarities for 60 to 90 minutes in the absence of oxygen, followed by another 90 minutes of reoxygenation. Lactate dehydrogenase (LDH) leakage into the effluent perfusate during the hypoxic and the reoxygenation period was eight- to 10-fold higher with a medium osmolarity of 385 mosmol/L than in normo-osmolarity, and further decreased with hypo-osmolar perfusion buffer. Betaine and taurine addition to the perfusate in near physiological concentrations decreased hypoxia-reoxygenation-induced LDH leakage, aspartate transaminase (AST) leakage, and perfusion pressure increase in hyperosmolar and normo-osmolar perfusions. Stimulation of PGD2, PGE2, thromboxane B2 (TXB2), and tumor necrosis factor alpha (TNF-alpha) release, as well as induction of carbon uptake by the liver during reoxygenation, were suppressed by betaine and taurine, pointing to an interference of these osmolytes with Kupffer cell function. In contrast, endothelial cell function as assessed by hyaluronic acid (HA) uptake was not influenced. It is concluded that warm ischemia-reoxygenation injury in rat liver is aggravated by hyperosmolarity and attenuated by hypo-osmolarity. The osmolytes betaine and taurine have a protective effect, presumably by inhibition of Kupffer cell activation. Topics: Animals; Anti-Inflammatory Agents, Non-Steroidal; Aspartate Aminotransferases; Betaine; Cytoprotection; Dinoprostone; Hyaluronic Acid; Ibuprofen; In Vitro Techniques; L-Lactate Dehydrogenase; Liver; Male; Osmolar Concentration; Perfusion; Prostaglandin D2; Rats; Rats, Wistar; Reperfusion Injury; Taurine; Thromboxane B2 | 1997 |