prostaglandin-d2 has been researched along with Metabolic-Syndrome* in 3 studies
2 review(s) available for prostaglandin-d2 and Metabolic-Syndrome
Article | Year |
---|---|
Nutrient-induced inflammation in the intestine.
To review our current understanding of the relationship between absorption of nutrients and intestinal inflammatory response.. There is increasing evidence linking gut local inflammatory events with the intake of nutrients. Our recent studies, using the conscious lymph fistula rat model, demonstrate that fat absorption activates the intestinal mucosal mast cells. This is accompanied by a dramatic increase in the lymphatic release of mast cell mediators including histamine, rat mucosal mast cell protease II (RMCPII), as well as the lipid mediator prostaglandin D2 (PGD2). Clinical studies suggest that increased consumption of animal fat may play a role in the pathogenesis of inflammatory bowel disease. This impact of dietary fat may not be restricted to the gut but may extend to the whole body. There is evidence linking a high-fat diet-induced metabolic syndrome, with a low-grade chronic inflammatory state. In this review, we hope to convince the readers that fat absorption can have far reaching physiological and pathophysiological consequences.. Understanding the relationship between nutrient absorption and intestinal inflammation is important. We need a better understanding of the interaction between enterocytes and the intestinal immune cells in nutrient absorption and the gut inflammatory responses. Topics: Amine Oxidase (Copper-Containing); Animals; Dietary Fats; Disease Models, Animal; Histamine; Inflammation; Inflammatory Bowel Diseases; Intestinal Absorption; Intestinal Mucosa; Mast Cells; Metabolic Syndrome; Prostaglandin D2; Rats; Serine Endopeptidases | 2011 |
[Activation mechanism of PPARgamma by its endogenous ligands].
Topics: Binding Sites; Humans; Ligands; Lipid Metabolism; Metabolic Syndrome; PPAR gamma; Prostaglandin D2; Prostaglandins; Protein Binding; Signal Transduction; Transcription, Genetic | 2005 |
1 other study(ies) available for prostaglandin-d2 and Metabolic-Syndrome
Article | Year |
---|---|
Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome.
We have previously shown nutritional intervention with fish oil (n-3 PUFA) to reduce numerous complications associated with the metabolic syndrome (MetS) in the JCR:LA-corpulent (cp) rat. In the present study, we sought to explore the potential role of fish oil to prevent glomerulosclerosis in JCR:LA-cp rats via renal eicosanoid metabolism and lipidomic analysis. Male lean and MetS JCR:LA-cp rats were fed a lipid-balanced diet supplemented with fish oil (5 or 10 % of total fat). After 16 weeks of feeding, albuminuria was significantly reduced in MetS rats supplemented with 5 or 10 % fish oil ( - 53 and - 70 %, respectively, compared with the untreated MetS rats). The 5 % fish oil diet resulted in markedly lower glomerulosclerosis ( - 43 %) in MetS rats and to a lesser extent in those supplemented with 10 % fish oil. Interestingly, untreated MetS rats had higher levels of 11- and 12-hydroxyeicosatetraenoic acids (HETE) v. lean rats. Dietary fish oil reduced these levels, as well as other (5-, 9- and 15-) HETE. Whilst genotype did not alter prostanoid levels, fish oil reduced endogenous renal levels of 6-keto PGF1α (PGI2 metabolite), thromboxane B2 (TxB2), PGF2α and PGD2 by approximately 60 % in rats fed 10 % fish oil, and TxB2 ( - 50 %) and PGF2α ( - 41 %) in rats fed 5 % fish oil. In conclusion, dietary fish oil prevented glomerular damage in MetS rats and mitigated the elevation in renal HETE levels. These results suggest a potential role for dietary fish oil to improve dysfunctional renal eicosanoid metabolism associated with kidney damage during conditions of the MetS. Topics: 6-Ketoprostaglandin F1 alpha; Albuminuria; Animals; Dietary Fats; Dietary Supplements; Dinoprost; Disease Models, Animal; Fish Oils; Genotype; Hydroxyeicosatetraenoic Acids; Kidney Diseases; Kidney Glomerulus; Male; Metabolic Syndrome; Prostaglandin D2; Prostaglandins; Rats; Rats, Inbred Strains; Thromboxane B2 | 2013 |